Ingredients | Amount Per Serving |
---|---|
(as Pyridoxal 5-Phosphate)
(Vitamin B6 (Form: as Pyridoxal 5'-Phosphate) )
|
5 mg |
(Glucosamine Salt, as Quatrefolic (6S)-5-Methyltetrahydrofolic Acid)
(Folate (Form: as Quatrefolic (6S)-5-Methyltetrahydrofolic Acid, Glucosamine Salt) )
|
100 mcg DFE |
(Methylcobalamin)
(Vitamin B12 (Form: as Methylcobalamine) )
|
100 mcg |
(as Acetyl-L-Carnitine HCl)
(Acetyl-L-Carnitine (Form: as Acetyl-L-Carnitine HCl) )
|
250 mg |
100 mg | |
(Ginkgo biloba )
(leaf)
(Ginkgoflavonglycosides, Terpene Lactones)
(Ginkgo extract (Form: 24% Ginkgoflavonglycosides, and 6% Terpene Lactones) PlantPart: leaf Genus: Ginkgo Species: biloba )
|
60 mg |
(Bacopa monniera )
(leaf)
(8% Bacosides)
(Bacopa extract (Form: 8% Bacosides) PlantPart: leaf Genus: Bacopa Species: monniera )
|
50 mg |
15 mg | |
5 mg | |
(from Polygonum cuspidatum root extract)
(Trans-Resveratrol (Form: from Polygonum cuspidatum root extract PlantPart: root Genus: Polygonum Species: cuspidatum) )
|
1 mg |
(from Huperzia serrata)
(Huperzine A (Form: from Huperzia serrata PlantPart: whole plant Genus: Huperzia Species: serrata) )
|
100 mcg |
HPMC Note: capsule, Stearic Acid (Alt. Name: C18:0), Calcium Silicate, Tricalcium Phosphate, Silica, Magnesium Stearate, Microcrystalline Cellulose
Below is general information about the effectiveness of the known ingredients contained in the product MemorAll. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product MemorAll. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Acetyl-L-carnitine has been used safely in doses up to 3 grams daily in clinical trials lasting up to 33 months (42,1589,1594,1595,1596,1597,1598,1599,3600,3601) (9105,9791,10076,12743,12745,58375,90755,90756,90759,90761)(90766,90767,90768,95063,95067,111862).
POSSIBLY SAFE ...when used parenterally and appropriately under medical supervision (1591,1592,12743).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Acetyl-L-carnitine has been safely used orally in children for up to 6 weeks (90754).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Bacopa has been used safely in clinical trials at a dose of up to 600 mg daily for up to 12 weeks (10058,10059,17946,97605).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Clinical research suggests bacopa extract might be safe to use at a dose of 225 mg daily for up to 6 months or 320 mg daily for up to 14 weeks in children aged 6-14 years (33304,97603,109625).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally or parenterally and appropriately. Folic acid has been safely used in amounts below the tolerable upper intake level (UL). The UL for folic acid is based only on supplemental folic acid and is expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for folic acid in adults is 1000 mcg (6241). In cases of megaloblastic anemia resulting from folate deficiency or malabsorption disorders such as sprue, oral doses of 1-5 mg per day can also be used safely until hematologic recovery is documented, as long as vitamin B12 levels are routinely measured (6241,7725,8739).
POSSIBLY SAFE ...when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term. L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks (104913,104914) and a dose of 113 mcg daily for 24 weeks (104920). A specific L-5-MTHF product (Metafolin, Eprova) has been used with apparent safety at a dose of 1.3 mg daily for 12 weeks (104912).
POSSIBLY UNSAFE ...when used orally in large doses, long-term. Clinical research shows that taking folic acid daily in doses of 800 mcg to 1200 mcg for 3-10 years significantly increases the risk of developing cancer and adverse cardiovascular effects compared to placebo (12150,13482,16822,17041). Doses above 1 mg per day should also be avoided if possible to prevent precipitation or exacerbation of neuropathy related to vitamin B12 deficiency (6241,6242,6245). However, there is contradictory evidence suggesting that higher doses may not be harmful. There is some evidence that doses of 5 mg per day orally for up to 4 months can be used safely if vitamin B12 levels are routinely measured (7725). Also, other clinical research suggests that folic acid supplementation at doses up to 5 mg, usually in combination with vitamin B12, does not increase the risk of cancer when taken for 2-7 years (91312). Very high doses of 15 mg per day can cause significant central nervous system (CNS) and gastrointestinal side effects (505).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Folic acid has been safely used in children in amounts below the tolerable upper intake level (UL). The ULs for folic acid are based only on supplemental folic acid and are expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for children is: 1-3 years of age, 300 mcg; 4-8 years of age, 400 mcg; 9-13 years of age, 600 mcg; 14-18 years of age, 800 mcg (6241).
CHILDREN: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately.
One clinical study in infants aged 27 days and younger shows that consuming a formula containing L-5-MTHF (Metafolin, Merck & Cie) 10.4 mcg/100 mL daily has been used with apparent safety for up to 12 weeks (104918).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Folic acid 300-400 mcg is commonly used during pregnancy for prevention of neural tube defects (8739). Miscarriage rates and negative impacts on fetal growth have not been shown to increase with peri-conception supplemental folic acid intakes of 4 mg per day (91320,91322). However, other research shows that taking more than 5 mg per day during pregnancy may reduce development of cognitive, emotional, and motor skills in infants (91318). Also, the tolerable upper intake level (UL) of folic acid for pregnant or lactating women is 800 mcg daily for those 14-18 years of age and 1000 mcg daily for those 19 years and older (6241).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term.
L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks during lactation. Compared to folic acid, this form seems to further increase the folate concentration of red blood cells, but not breast milk (104913,104914).
LIKELY SAFE ...when used orally and appropriately. Standardized ginkgo leaf extracts have been used safely in trials lasting for several weeks up to 6 years (1514,1515,3461,5717,5718,6211,6212,6213,6214,6215)(6216,6222,6223,6224,6225,6490,14383,14499,16634,16635)(16636,16637,17402,17716,17718,87794,87819,87826,87848,87864)(87888,87897,87901,87904,89701,89707,107359,107360). There have been some reports of arrhythmias associated with ginkgo leaf extract. However, it is not yet clear if ginkgo might cause arrhythmia (105253,105254). There is some concern about toxic and carcinogenic effects seen in animals exposed to a ginkgo leaf extract containing 31.2% flavonoids, 15.4% terpenoids, and 10.45 ppm ginkgolic acid, in doses of 100 to 2000 mg/kg five times per week for 2 years (18272). However, the clinical relevance of this data for humans, using typical doses, is unclear. The content of the extract used is not identical to that commonly used in supplement products, and the doses studied are much higher than those typically used by humans. A single dose of 50 mg/kg in rats is estimated to be equivalent to a single dose of about 240 mg in humans (18272).
POSSIBLY SAFE ...when used intravenously, short-term. A standardized ginkgo leaf extract called EGb 761 ONC has been safely administered intravenously for up to 14 days (9871,9872,107360,107452). A Chinese preparation containing ginkgo leaf extract and dipyridamole has been safely administered intravenously for up to 30 days (102881,102882). ...when applied topically, short-term. There was no dermal irritation during a 24-hour patch test using the leaf extract, and no sensitization with repeat applications (112946). When used topically in cosmetics, extracts of ginkgo leaves are reported to be safe, but there is insufficient data to determine the safety of nut and root extracts, and isolated biflavones and terpenoids (112946).
POSSIBLY UNSAFE ...when the roasted seed or crude ginkgo plant is used orally. Consuming more than 10 roasted seeds per day can cause difficulty breathing, weak pulse, seizures, loss of consciousness, and shock (8231,8232). Crude ginkgo plant parts can exceed concentrations of 5 ppm of the toxic ginkgolic acid constituents and can cause severe allergic reactions (5714).
LIKELY UNSAFE ...when the fresh ginkgo seed is used orally. Fresh seeds are toxic and potentially deadly (11296).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is concern that ginkgo might have labor-inducing and hormonal effects. There is also concern that the antiplatelet effects of ginkgo could prolong bleeding time if taken around the time of labor and delivery (15052). Theoretically, ginkgo might adversely affect pregnancy outcome; avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (87790,89708).
A specific ginkgo dried extract (Ginko T.D., Tolidaru Pharmaceuticals), has been safely used in doses of 80-120 mg daily for 6 weeks in children aged 6-14 years (17112,95669). Another specific combination product containing ginkgo leaf extract and American ginseng extract (AD-FX, CV Technologies, Canada) has also been safely used in children aged 3-17 years for up to 4 weeks (8235).
CHILDREN: LIKELY UNSAFE
when ginkgo seed is used orally.
The fresh seeds have caused seizures and death in children (8231,11296).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Huperzine A 200-800 mcg daily has been used with apparent safety in clinical trials lasting up to 6 months (3171,3561,4626,93478,93479,93480,93481,93482,93483,93485).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Huperzine A has been used with apparent safety in clinical research lasting for 1 month (4626).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally, intravenously, intratracheally, or by inhalation and appropriately. N-acetyl cysteine is an FDA-approved prescription drug (832,1539,1705,1710,2245,2246,2252,2253,2254,2256)(2258,2259,2260,5808,6176,6611,7868,10270,10271,16840)(91243,91247,102027,102660,102666,99531).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
N-acetyl cysteine has been safely used at doses of 900-2700 mg daily for 8-12 weeks (91235,91239,91241,102666). ...when used intravenously and appropriately. Intravenous N-acetyl cysteine 140 mg/kg/day plus oral N-acetyl cysteine 70 mg/kg four times daily for up to 10 months has been safely used (64547).
PREGNANCY: POSSIBLY SAFE
when used orally, intratracheally, intravenously, or by inhalation.
N-acetyl cysteine crosses the placenta, but has not been associated with adverse effects to the fetus (1711,64615,64493,97041). However, N-acetyl cysteine should only be used in pregnancy when clearly indicated, such as in cases of acetaminophen toxicity.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Phosphatidylserine has been used with apparent safety at dose of up to 300 mg daily for up to 6 months (2255,2437,2438,2439,2440,2441,7118,15539,68855).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (7117).
Phosphatidylserine has been used with apparent safety in clinical research in doses of 200-300 mg daily for up to 4 months in children aged 4-18 years (7117,89498).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts found in foods (2030).
POSSIBLY SAFE ...when taken orally in doses of up to 1500 mg daily for up to 3 months (71066,71097,91328,91331,95825,95833,98910,100695,105183,109163,109167). Higher doses of 2000-3000 mg daily have been well tolerated when taken for 2-6 months, but are more likely to cause gastrointestinal side effects (91327,98908). ...when used topically for up to 30 days (71064). ...when used as an intranasal spray for up to 4 weeks (97339).
CHILDREN: LIKELY SAFE
when used in amounts found in foods.
CHILDREN: POSSIBLY SAFE
when used as an intranasal spray for up to 2 months in children 4 years of age and older (91332).
There is insufficient reliable information available about the safety of resveratrol when used by mouth in larger amounts as medicine.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts found in foods (2030).
Resveratrol is found in grape skins, grape juice, wine, and other food sources. However, wine should not be used as a source of resveratrol during pregnancy and lactation.
POSSIBLY SAFE ...when used orally and appropriately for up to 12 months (1784,1788,82041,82074,82089,82091,82120,82121,82151,82152)(82153,82154,82179,82180,82182,82183,104522,106845,110744). ...when used intravenously and appropriately, short-term (82074,82099,82147,82158,82159,82186,110744).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
In June 2019, the US Food and Drug Administration (FDA) issued a statement of warning that those who are pregnant or who could become pregnant should avoid vinpocetine (95751). In rats, vinpocetine has been associated with an increased risk of miscarriage at a dose of 60 mg/kg daily and with reduced fetal weight and increased incidence of birth defects at a dose of 5-20 mg/kg. Based on pharmacokinetic analyses, a daily vinpocetine dose of 10 mg in humans is comparable to a daily dose of 5 mg/kg in rats (99701).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally, topically, intravenously, intramuscularly, or intranasally and appropriately. Vitamin B12 is generally considered safe, even in large doses (15,1344,1345,1346,1347,1348,2909,6243,7289,7881)(9414,9416,10126,14392,15765,82832,82949,82860,82864,90386)(111334,111551).
PREGNANCY: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA for vitamin B12 during pregnancy is 2.6 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA of vitamin B12 during lactation is 2.8 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 while breastfeeding.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily in the form of pyridoxine for adults (15,6243). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 30 mg daily for children aged 1-3 years, 40 mg daily for 4-8 years, 60 mg daily for 9-13 years, and 80 mg daily for 14-18 years (6243).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (6243).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring. The tolerable upper intake level (UL) refers to vitamin B6 in the form of pyridoxine and is 80 mg daily for those aged 14-18 years and 100 mg daily for 19 years and older (6243).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 80 mg daily for those aged 14-18 years and 100 mg daily for those 19 years and older.
The recommended dietary allowance (RDA) in lactating women is 2 mg daily (6243). There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product MemorAll. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, acetyl-L-carnitine might increase the anticoagulant effects of acenocoumarol.
L-carnitine, the parent compound of acetyl-L-carnitine, might enhance the anticoagulant effects of acenocoumarol, an oral anticoagulant that is similar to warfarin, but shorter-acting (9878,12165). There are at least two case reports of INR elevation when L-carnitine was taken with acenocoumarol. In one case, a 33-year-old male with a previously stable INR had an elevated INR of 4.65 after L-carnitine was started and continued for 10 weeks. INR normalized after discontinuation of the L-carnitine-containing product (12165). It is unclear if such an interaction would also occur with acetyl-L-carnitine.
|
Theoretically, acetyl-L-carnitine might increase the risk of serotonergic side effects, including serotonin syndrome and cerebral vasoconstrictive disorders, when taken with serotonergic drugs.
Animal research shows that acetyl-L-carnitine can increase levels of serotonin in the brain (95065).
|
Theoretically, acetyl-L-carnitine might decrease the effectiveness of thyroid hormone replacement.
L-carnitine appears to act as a peripheral thyroid hormone antagonist by inhibiting entry of thyroid hormone into the nucleus of cells (12761). Taking L-carnitine also seems to diminish some of the symptoms of hyperthyroidism (8047). It is unclear if such an interaction would occur with acetyl-L-carnitine.
|
Theoretically, acetyl-L-carnitine might increase the anticoagulant effects of warfarin.
|
Theoretically, concurrent use might decrease the effectiveness of both agents.
Bacopa seems to inhibit acetylcholinesterase and might increase acetylcholine levels, which could counteract the effects of anticholinergic drugs (17946). Similarly, anticholinergic drugs might counteract the cholinergic effects of bacopa.
|
Theoretically, bacopa might increase the effects and adverse effects of cevimeline.
In one case, a 58-year-old female taking cevimeline long-term for Sjogren syndrome experienced hyperhidrosis, malaise, nausea, and tachycardia shortly after taking a single dose of bacopa. Symptoms resolved after two days. Cevimeline is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4, and researchers theorize that bacopa may have inhibited these isoenzymes (109627). However, it is unclear if bacopa causes clinically significant inhibition of either CYP2D6 or CYP3A4.
|
Theoretically, concurrent use of bacopa with other cholinergic drugs might have additive effects.
Bacopa seems to inhibit acetylcholinesterase and might increase acetylcholine levels (17946). Theoretically, this could result in additive cholinergic effects when used with cholinergic drugs.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP1A2 substrates.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP2C19 substrates.
In vitro evidence suggests that bacopa extract can moderately and non-competitively inhibit CYP2C19 enzymes (97606). It is not known whether this is clinically significant.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP2C9 substrates.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP3A4 substrates.
|
Theoretically, bacopa might have additive effects when used with thyroid hormone.
Animal research suggests that bacopa increases thyroxine (T4) levels in mice by about 40% (33286).
|
Theoretically, high doses of folic acid might increase the toxicity of 5-fluorouracil.
Increases in gastrointestinal side effects of 5-fluorouracil, such as stomatitis and diarrhea, have been described in two clinical studies when leucovorin, a form of folic acid, was administered with 5-fluorouracil (16845).
|
Use of high-dose folic acid might contribute to capecitabine toxicity.
Clinical research suggests that higher serum folate levels are associated with an increased risk for moderate or severe toxicity during capecitabine-based treatment for colorectal cancer (105402). Additionally, in one case report, taking folic acid 15 mg daily might have contributed to increased toxicity, including severe diarrhea, vomiting, edema, hand-foot syndrome, and eventually death, in a patient prescribed capecitabine (16837).
|
Folic acid might reduce the efficacy of methotrexate as a cancer treatment when given concurrently.
Methotrexate exerts its cytotoxic effects by preventing conversion of folic acid to the active form needed by cells. There is some evidence that folic acid supplements reduce the efficacy of methotrexate in the treatment of acute lymphoblastic leukemia, and theoretically they could reduce its efficacy in the treatment of other cancers (9420). Advise cancer patients to consult their oncologist before using folic acid supplements. In patients treated with long-term, low-dose methotrexate for rheumatoid arthritis (RA) or psoriasis, folic acid supplements can reduce the incidence of side effects, without reducing efficacy (768,2162,4492,4493,4494,4546,9369).
|
Folic acid might have antagonistic effects on phenobarbital and increase the risk for seizures.
|
Folic acid might reduce serum levels of phenytoin in some patients.
Folic acid may be a cofactor in phenytoin metabolism (4471). Folic acid, in doses of 1 mg daily or more, can reduce serum levels of phenytoin in some patients (4471,4477,4531,4536). Increases in seizure frequency have been reported. If folic acid supplements are added to established phenytoin therapy, monitor serum phenytoin levels closely. If phenytoin and folic acid are started at the same time and continued together, adverse changes in phenytoin pharmacokinetics are avoided (4471,4472,4473,4531). Note that phenytoin also reduces serum folate levels.
|
Folic acid might have antagonistic effects on primidone and increase the risk for seizures.
|
Folic acid might antagonize the effects of pyrimethamine.
Folic acid can antagonize the antiparasitic effects of pyrimethamine against toxoplasmosis and Pneumocystis carinii pneumonia. Folic acid doesn't antagonize the effects of pyrimethamine in the treatment of malaria, because malarial parasites cannot use exogenous folic acid. Use folinic acid as an alternative to folic acid when indicated (9380).
|
Theoretically, ginkgo might decrease the levels and clinical effects of alprazolam.
In clinical research, ginkgo extract (Ginkgold) 120 mg twice daily seems to decrease alprazolam levels by about 17%. However, ginkgo does not appear to decrease the elimination half-life of alprazolam. This suggests that ginkgo is more likely to decrease absorption of alprazolam rather than induce hepatic metabolism of alprazolam (11029).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin. Theoretically, ginkgo might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs.
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,578,579,8581,13002,13135,13179,13194,14456,87868). However, population and clinical studies have produced mixed results. Some evidence shows that short-term use of ginkgo leaf does not significantly reduce platelet aggregation and blood clotting (87732). A study in healthy males who took a specific ginkgo leaf extract (EGb 761) 160 mg twice daily for 7 days found no change in prothrombin time (12114). An analysis of a large medical record database suggests that ginkgo increases the risk of a bleeding adverse event by 38% when taken concurrently with warfarin (91326). It has been suggested that ginkgo has to be taken for at least 2-3 weeks to have a significant effect on platelet aggregation (14811). However, a meta-analysis of 18 studies using standardized ginkgo extracts, 80-480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). In addition, a single dose of ginkgo plus clopidogrel (14811) or ticlopidine does not seem to significantly increase bleeding time or platelet aggregation (17111,87846). Also, taking ginkgo leaf extract daily for 8 days in conjunction with rivaroxaban does not affect anti-factor Xa activity; however, this study did not evaluate bleeding time (109526).
|
Theoretically, ginkgo might reduce the effectiveness of anticonvulsants.
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090).
|
Theoretically, taking ginkgo with antidiabetes drugs might alter the response to antidiabetes drugs.
Ginkgo leaf extract seems to alter insulin secretion and metabolism, and might affect blood glucose levels in people with type 2 diabetes (5719,14448,103574). The effect of ginkgo seems to differ depending on the insulin and treatment status of the patient. In diet-controlled diabetes patients with hyperinsulinemia, taking ginkgo does not seem to significantly affect insulin or blood glucose levels. In patients with hyperinsulinemia who are treated with oral hypoglycemic agents, taking ginkgo seems to decrease insulin levels and increase blood glucose following an oral glucose tolerance test. Researchers speculate that this could be due to ginkgo-enhanced hepatic metabolism of insulin. In patients with pancreatic exhaustion, taking ginkgo seems to stimulate pancreatic beta-cells, resulting in increased insulin and C-peptide levels, but with no significant change in blood glucose levels in response to an oral glucose tolerance test (14448).
|
Theoretically, ginkgo might decrease the levels and clinical effects of atorvastatin.
In humans, intake of ginkgo extract appears to increase atorvastatin clearance, reducing the area under the curve of atorvastatin by 10% to 14% and the maximum concentration by 29%. However, this interaction does not appear to affect cholesterol synthesis and absorption (89706). Further, a model in rats with hyperlipidemia suggests that administering ginkgo extract does not impact blood levels of atorvastatin and leads to lower total cholesterol, low-density lipoprotein cholesterol, and triglycerides when compared with rats given atorvastatin alone (111331).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP1A2.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP2C19.
Some clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce CYP2C19 enzymes and potentially decrease levels of drugs metabolized by these enzymes (13108). However, other clinical research shows that taking ginkgo 120 mg twice daily for 12 days has no effect on levels of drugs metabolized by CYP2C19 (87824).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP2C9.
In vitro, a specific standardized extract of ginkgo leaf (EGb 761) inhibits CYP2C9 activity (11026,12061,14337). The terpenoid (ginkgolides) and flavonoid (quercetin, kaempferol, etc.) constituents seem to be responsible for this effect. Most ginkgo extracts contain some amount of these constituents. Therefore, other ginkgo leaf extracts might also inhibit the CYP2C9 enzyme. However, clinical research suggests that ginkgo might not have a significant effect on CYP2C9 in humans. Ginkgo does not seem to significantly affect the pharmacokinetics of CYP2C9 substrates diclofenac or tolbutamide.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP3A4.
There is conflicting evidence about whether ginkgo induces or inhibits CYP3A4 (1303,6423,6450,11026,87800,87805,111330). Ginkgo does not appear to affect hepatic CYP3A4 (11029). However, it is not known if ginkgo affects intestinal CYP3A4. Preliminary clinical research suggests that taking ginkgo does not significantly affect levels of donepezil, lopinavir, or ritonavir, which are all CYP3A4 substrates (11027,87800,93578). Other clinical research also suggests ginkgo does not significantly affect CYP3A4 activity (10847). However, there are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821,25464).
|
Theoretically, ginkgo might decrease the levels and clinical effects of efavirenz.
There are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. In one case, an HIV-positive male experienced over a 50% decrease in efavirenz levels over the course of 14 months while taking ginkgo extract. HIV-1 RNA copies also increased substantially, from less than 50 to more than 1500. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821). In another case report, a patient stable on antiviral therapy including efavirenz for 10 years, had an increase in viral load from <50 copies/mL to 1350 copies/mL after 2 months of taking a combination of supplements including ginkgo. After stopping ginkgo, the viral load was again controlled with the same antiviral therapy regimen (25464).
|
Theoretically, ginkgo might increase the risk of bleeding when used with ibuprofen.
Ginkgo might have antiplatelet effects and has been associated with several case reports of spontaneous bleeding. In one case, a 71-year-old male had taken a specific ginkgo extract (Gingium, Biocur) 40 mg twice daily for 2.5 years. About 4 weeks after starting ibuprofen 600 mg daily he experienced a fatal intracerebral hemorrhage (13179). However, the antiplatelet effects of ginkgo have been questioned. A meta-analysis and other studies have not found a significant antiplatelet effect with standardized ginkgo extracts, 80 mg to 480 mg taken daily for up to 32 weeks (17179).
|
Theoretically, taking ginkgo with oral, but not intravenous, nifedipine might increase levels and adverse effects of nifedipine.
Animal research and some clinical evidence suggests that taking ginkgo leaf extract orally in combination with oral nifedipine might increase nifedipine levels and cause increased side effects, such as headaches, dizziness, and hot flushes (87764,87765). However, taking ginkgo orally does not seem to affect the pharmacokinetics of intravenous nifedipine (87765).
|
Theoretically, taking ginkgo with omeprazole might decrease the levels and clinical effects of omeprazole.
Clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce cytochrome P450 (CYP) 2C19 enzymes and decrease levels of omeprazole by about 27% to 42% (13108).
|
Theoretically, taking ginkgo with P-glycoprotein substrates might increase the levels and adverse effects of these substrates.
A small clinical study in healthy volunteers shows that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of the P-glycoprotein substrate, talinolol, by 36% in healthy male individuals. However, single doses of ginkgo do not have the same effect (87830).
|
Theoretically, taking ginkgo with risperidone might increase the levels and adverse effects of risperidone.
A single case of priapism has been reported for a 26-year-old male with schizophrenia who used risperidone 3 mg daily along with ginkgo extract 160 mg daily (87796). Risperidone is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4. CYP3A4 activity might be affected by ginkgo. Theoretically, ginkgo may inhibit the metabolism of risperidone and increase the risk of adverse effects.
|
Theoretically, ginkgo might decrease the levels and clinical effects of rosiglitazone.
Animal research shows that ginkgo leaf extract orally 100 or 200 mg/kg daily for 10 days alters the pharmacodynamics of rosiglitazone in a dose-dependent manner. The 100 mg/kg and 200 mg/kg doses reduce the area under the concentration time curve (AUC) of rosiglitazone by 39% and 52%, respectively, and the half-life by 28% and 39%, respectively. It is hypothesized that these changes may be due to induction of cytochrome P450 2C8 by ginkgo (109525).
|
Theoretically, taking ginkgo with drugs that lower the seizure threshold might increase the risk for convulsions.
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,14281).
|
Theoretically, ginkgo might decrease the levels and clinical effects of simvastatin.
Clinical research shows that taking ginkgo extract can reduce the area under the curve and maximum concentration of simvastatin by 32% to 39%. However, ginkgo extract does not seem to affect the cholesterol-lowering ability of simvastatin (89704).
|
Theoretically, ginkgo might increase the levels and clinical effects of sofosbuvir.
Animal research in rats shows that giving a ginkgo extract 25 mg/kg orally daily for 14 days increases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 11%, increases the half-life by 60%, and increases the plasma concentration at 4 hours by 38%. This interaction appears to be related to the inhibition of intestinal P-glycoprotein by ginkgo (109524).
|
Theoretically, ginkgo might increase the blood levels of tacrolimus.
In vitro evidence suggests that certain biflavonoids in ginkgo leaves (i.e. amentoflavone, ginkgetin, bilobetin) may inhibit the metabolism of tacrolimus by up to 50%. This interaction appears to be time-dependent and due to inhibition of cytochrome P450 (CYP) 3A4 by these bioflavonoids. In rats given tacrolimus 1 mg/kg orally, amentoflavone was shown to increase the area under the concentration time curve (AUC) of tacrolimus by 3.8-fold (111330).
|
Taking ginkgo with talinolol seems to increase blood levels of talinolol.
There is some evidence that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of talinolol by 36% in healthy male individuals. However, single doses of ginkgo do not seem to affect talinolol pharmacokinetics (87830).
|
Theoretically, ginkgo might increase the levels and clinical effects of trazodone.
In a case report, an Alzheimer patient taking trazodone 20 mg twice daily and ginkgo leaf extract 80 mg twice daily for four doses became comatose. The coma was reversed by administration of flumazenil (Romazicon). Coma might have been induced by excessive GABA-ergic activity. Ginkgo flavonoids are thought to have GABA-ergic activity and act directly on benzodiazepine receptors. Ginkgo might also increase metabolism of trazodone to active GABA-ergic metabolites, possibly by inducing cytochrome P450 3A4 (CYP3A4) metabolism (6423).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin.
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,576,578,579,8581,13002,13135,13179,13194,14456,87868). Information from a medical database suggests that when taken concurrently with warfarin, ginkgo increases the risk of a bleeding adverse event by 38% (91326). There is also some evidence that ginkgo leaf extract can inhibit cytochrome P450 2C9, an enzyme that metabolizes warfarin. This could result in increased warfarin levels (12061). However, population and clinical research has produced mixed results. Clinical research in healthy people suggests that ginkgo has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176,87727,87889). A meta-analysis of 18 studies using standardized ginkgo extracts, 80 mg to 480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). There is also some preliminary clinical research that suggests ginkgo might not significantly increase the effects of warfarin in patients that have a stable INR (11905).
|
Theoretically, huperzine A might decrease the effects of anticholinergic drugs.
|
Theoretically, concurrent use of huperzine A with cholinergic drugs might increase the effects and side effects of these medications.
Huperzine A can inhibit acetylcholinesterase (AChE) and might cause cumulative effects if used with cholinergic drugs (3131).
|
N-acetyl cysteine might reduce the effects of activated charcoal, while activated charcoal might reduce the absorption of N-acetyl cysteine.
N-acetyl cysteine appears to reduce the capacity of activated charcoal to adsorb acetaminophen and salicylic acid (7869). Conversely, although clinical research suggests that although activated charcoal can reduce the absorption of N-acetyl cysteine by up to 40%, it does not seem to reduce its clinical effects (1755,22774,22775,64501,64647). Other clinical evidence suggests that activated charcoal does not affect the absorption of N-acetyl cysteine (22776,22777).
|
Theoretically, N-acetyl cysteine might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Clinical research suggests that intravenous N-acetyl cysteine decreases prothrombin time, prolongs coagulation time, decreases platelet aggregation, and increases blood loss in surgical patients (64511,64644). Furthermore, in vitro research suggests that N-acetyl cysteine increases the anticoagulant activity of nitroglycerin (22780,64780).
|
Theoretically, N-acetyl cysteine might increase the risk of hypotension when taken with antihypertensive drugs.
Animal research suggests that N-acetyl cysteine potentiates the hypotensive effects of the angiotensin-converting enzyme inhibitors (ACEIs) captopril and enalaprilat (22785). Theoretically, combining N-acetyl cysteine with other antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, N-acetyl cysteine might interfere with the antimalarial effects of chloroquine.
Animal research suggests that N-acetyl cysteine might reduce the antimalarial effects of chloroquine by increasing cellular levels of glutathione (22786).
|
N-acetyl cysteine can increase the risk for hypotension and headaches when taken with intravenous or transdermal nitroglycerin.
Clinical research shows that concomitant administration of N-acetyl cysteine and intravenous or transdermal nitroglycerin can cause severe hypotension (2246) and intolerable headaches (2245,2280). Furthermore, in vitro research suggests that N-acetyl cysteine increases the anticoagulant activity of nitroglycerin (22780,64780).
|
Theoretically, phosphatidylserine might decrease the effectiveness anticholinergic drugs.
|
Theoretically, phosphatidylserine might have additive effects with cholinergic drugs.
|
Resveratrol may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP1A1.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP1A2.
In vitro research shows that resveratrol can inhibit CYP1A2 enzymes (21733). However, this interaction has not been reported in humans.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP1B1.
In vitro research shows that resveratrol can inhibit CYP1B1 enzymes (70834). However, this interaction has not been reported in humans.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP2C19.
In vitro research shows that resveratrol can inhibit CYP2C19 enzymes (70896). However, this interaction has not been reported in humans.
|
Resveratrol might increase levels of drugs metabolized by CYP2E1.
In vitro research suggests that resveratrol inhibits CYP2E1 isoenzyme (7864,70896). Also, a pharmacokinetic study shows that taking resveratrol 500 mg daily for 10 days prior to taking a single dose of chlorzoxazone 250 mg increases the maximum concentration of chlorzoxazone by about 54%, the area under the curve of chlorzoxazone by about 72%, and the half-life of chlorzoxazone by about 35% (95824). Chlorzoxazone is used as a probe drug for CYP2E1.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP3A4.
|
Vinpocetine might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Clinical research shows that vinpocetine decreases red blood cell aggregation, as well as plasma and whole blood viscosity. This effect has been seen with intravenous vinpocetine 1 mg/kg and oral vinpocetine 30 mg daily (82101,82119). Vinpocetine also seems to have antiplatelet effects (1801,10061,82117).
|
Theoretically, vinpocetine might increase levels of drugs metabolized by CYP2C9.
In vitro research shows that vinpocetine weakly inhibits CYP2C9 (92933). However, this effect has not been reported in humans.
|
Vinpocetine might modestly increase the risk of bleeding when taken with warfarin.
Clinical research shows that the combination of warfarin and vinpocetine leads to slight increases in prothrombin time and the area under the concentration curve for warfarin. However, these increases were small, and researchers suggest that this interaction is not likely to be clinically significant in most patients (10829).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
|
Below is general information about the adverse effects of the known ingredients contained in the product MemorAll. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, acetyl-L-carnitine is generally well tolerated.
Most Common Adverse Effects:
Orally: Agitation, dry mouth, headache, insomnia, and reduced appetite. A metabolite of acetyl-L-carnitine has been reported to cause a fishy odor of the urine, breath, and sweat.
Cardiovascular ...Orally, one patient in a pharmacokinetic study reported high blood pressure 8 hoursafter taking acetyl-L-carnitine 500 mg; however, it is unclear if this was due to acetyl-L-carnitine or another factor (95061).
Dermatologic ...Orally, a combination of acetyl-L-carnitine and alpha-lipoic acid may cause rash (90441).
Gastrointestinal ...Orally, acetyl-L-carnitine may cause nausea, vomiting, diarrhea, constipation, hiccups, abdominal distension and gastrointestinal upset or pain. However, gastrointestinal symptoms do not usually occur more often in patients receiving acetyl-L-carnitine than in patients receiving placebo (1596,1599,12743,13007,58922,90755,95063,95067,111889,111894). Acetyl-L-carnitine may also cause dry mouth and anorexia (58342). When taken orally, a combination of acetyl-L-carnitine and alpha-lipoic acid may cause diarrhea, constipation, and dyspepsia (90441).
Neurologic/CNS ...Orally, acetyl-L-carnitine may cause headache and insomnia (90760,90767,95063). In one clinical trial, two patients with antiretroviral toxic neuropathy reported paresthesia, pain, and neuropathy after taking acetyl-L-carnitine 1000 mg daily (58342). A case of mania has been reported for a patient with bipolar I disorder currently in remission. The patient presented with symptoms after taking multiple supplements for the past 4 weeks including acetyl-L-carnitine 1000 mg twice daily. The symptoms appeared 3 days after beginning to take acetyl-L-carnitine and worsened over the next week. The patient had increased speech rate and volume and reported increased energy levels and racing thoughts. The patient's parent reported irritability and an increase in loud behaviors at home, similar to a previous episode of mania. The patient was advised to discontinue acetyl-L-carnitine, and the manic symptoms disappeared 3 days later (95062).
Psychiatric ...Orally, acetyl-L-carnitine may cause agitation (restlessness and motor overactivity) (1596,1599,12743,13007). Side effects reported in people with Alzheimer disease include psychiatric disturbances such as depression, mania, confusion and aggression, but it is not clear whether these are due to acetyl-L-carnitine or the condition itself (1594,1595,1596,1597,1598,1599,9105,10391).
Other ...One of the metabolites of acetyl-L-carnitine can cause the urine, breath, and sweat to have a fishy odor (12756). Also, foul smelling urine has been reported following oral use of a combination of acetyl-L-carnitine and alpha-lipoic acid (90441).
General
...Orally, bacopa is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, dry mouth, headache, nausea.
Cardiovascular ...Orally, bacopa has been reported to cause palpitations (10058).
Gastrointestinal ...Orally, bacopa has been reported to cause abdominal cramps, abdominal pain, bloating, decreased appetite, diarrhea, dry mouth, excessive thirst, flatulence, indigestion, nausea, and increased stool frequency. Rates of adverse gastrointestinal events have ranged from 12% to 30% (10058,17946,33295,97605,109623,111520).
Musculoskeletal ...Orally, bacopa has been reported to cause arthralgia, muscle fatigue, and myopathy (10058,109623,111522). In one case, a 21-year-old male experienced progressive proximal weakness, muscle atrophy, weight loss, dark urine, and elevated serum markers of myopathy, with muscle biopsy showing immune-mediated necrotizing myopathy, after taking a supplement containing bacopa for 5 years (111522).
Neurologic/CNS ...Orally, bacopa has been reported to cause drowsiness, headache, insomnia, and vivid dreams (10058,10059,17946,109623).
Other ...Orally, bacopa has been reported to cause flu like symptoms and fatigue (10058,97605,111520).
General
...Orally, folic acid is generally well-tolerated in amounts found in fortified foods, as well as in supplemental doses of less than 1 mg daily.
Most Common Adverse Effects:
Orally: At doses of 5 mg daily - abdominal cramps, diarrhea, and rash. At doses of 15 mg daily - bitter taste, confusion, hyperactivity, impaired judgment, irritability, nausea, sleep disturbances.
Serious Adverse Effects (Rare):
Orally: Cancer (long-term use), cardiovascular complications, liver injury, seizures.
All ROAs: Allergic reactions such as bronchospasm and anaphylactic shock.
Cardiovascular ...There is some concern that high oral doses of folic acid might increase the risk of adverse cardiovascular outcomes. Clinical research shows that taking doses of 800 mcg to 1.2 mg/day might increase the risk of adverse cardiovascular events in patients with cardiovascular disease (12150,13482). High doses of folic acid might promote cell growth by providing large amounts of the biochemical precursors needed for cell replication. Overgrowth of cells in the vascular wall might increase the risk of occlusion (12150). Although some research suggests that use of folic acid might increase the need for coronary revascularization, analysis of multiple studies suggests that taking folic acid up to 5 mg/day for up to 24 months does not appear to affect coronary revascularization risk (90798).
Dermatologic ...Orally, folic acid 1-5 mg daily can cause rash (7225,90375,91319). Folic acid 15 mg daily can sometimes cause allergic skin reactions (15).
Gastrointestinal ...Orally, folic acid 5 mg daily can cause abdominal cramps and diarrhea (7225). Folic acid 15 mg daily can sometimes cause nausea, abdominal distention, flatulence, and bitter taste in the mouth (15). In children aged 6-30 months at risk of malnourishment, taking a nutritional supplement (Nutriset Ltd) enriched in folic acid 75-150 mcg daily, with or without vitamin B 12 0.9-1.8 mcg daily, for 6 months increases the likelihood of having persistent diarrhea (90391).
Hepatic ...Liver dysfunction, with jaundice and very high liver enzymes, occurred in a 30-year-old pregnant patient with severe nausea and vomiting taking a folic acid supplement (Folic acid, Nature Made) 400 mcg daily. Based on the timing of ingestion, the lack of other etiological factors, a positive drug-induced lymphocyte stimulation test, and liver function normalization once the folic acid had been stopped, the authors suggest the folic acid supplement was the cause. However, the authors did not determine which substance in the folic acid supplement was responsible and therefore it cannot be determined that folic acid itself was the cause (91309).
Neurologic/CNS ...Orally, folic acid 15 mg daily can sometimes cause altered sleep patterns, vivid dreaming, irritability, excitability, hyperactivity, confusion, and impaired judgment (15). Large doses of folic acid can also precipitate or exacerbate neuropathy in people deficient in vitamin B12 (6243). Use of folic acid for undiagnosed anemia has masked the symptoms of pernicious anemia, resulting in lack of treatment and eventual neurological damage (15). Patients should be warned not to self-treat suspected anemia. There is also some concern that consuming high amounts of folic acid from the diet and/or supplements might worsen cognitive decline in older people. A large-scale study suggests that people over 65 years of age, who consume large amounts of folic acid (median of 742 mcg/day), have cognitive decline at a rate twice as fast as those consuming smaller amounts (median of 186 mcg/day). It's not known if this is directly attributable to folic acid. It is theorized that it could be due to folic acid masking a vitamin B12 deficiency. Vitamin B12 deficiency is associated with cognitive decline (13068). More evidence is needed to determine the significance of this finding. For now, suggest that most patients aim for the recommended folic acid intake of 400 mcg/day.
Oncologic
...There is some concern that high dose folic acid might increase the risk of cancer, although research is unclear and conflicting.
A large-scale population study suggests that taking a multivitamin more than 7 times per week with a separate folic acid supplement significantly increased the risk of prostate cancer (15607). Clinical research also shows that taking folic acid 1 mg daily increase the absolute risk of prostate cancer by 6.4% over a 10-year period when compared with placebo. However, those with a higher baseline dietary intake of folic acid had a lower rate of prostate cancer, but this was not statistically significant. Also, folate and folic acid intake in patients with prostate cancer is not associated with the risk of prostate cancer recurrence after radical prostatectomy (91317). However, it is possible that discrepancies are due to dietary folate versus folic acid intake. Large analyses of population studies suggest that while dietary folate/folic acid is not associated with prostate cancer, high blood folate/folic acid increases the risk of prostate cancer (50411,91316).
Additional clinical research shows that taking folic acid 800 mcg daily, in combination with vitamin B12 400 mcg, significantly increases the risk of developing cancer, especially lung cancer, and all-cause mortality in patients with cardiovascular disease (17041). However, this may be due to vitamin B12, as other observational research found that higher vitamin B12 levels are linked with an increased risk for lung cancer (102383). Meta-analyses of large supplementation trials of folic acid at levels between 0.5-2.5 mg daily also suggest an increased risk of cancer (50497,110318). Also, in elderly individuals, taking folic acid 400 mcg daily with vitamin B12 500 mcg daily increased the risk of cancer. The risk was highest in individuals over 80 years of age and in females and mainly involved gastrointestinal and colorectal cancers (90393).
Not all researchers suspect that high intake of folic acid supplements might be harmful. Some research suggests that increased dietary intake of folic acid, along with other nutrients, might be protective against cancer (16822). A meta-analysis of multiple clinical trials suggests that folic acid supplementation studies with folic acid levels between 500 mcg to 50 mg/day does not increase the risk of general or site-specific cancer for up to 7 years (91312,91321). Also, a post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378).
Psychiatric ...Orally, folic acid 15 mg daily can sometimes cause exacerbation of seizure frequency and psychotic behavior (15).
Pulmonary/Respiratory ...Folic acid use in late pregnancy has been associated with an increased risk of persistent and childhood asthma at 3. 5 years in population research (50380). When taken pre-pregnancy or early in pregnancy, population research has not found an association with increased risk of asthma or allergies in childhood (90799,103979). Folic acid use in pregnancy has been associated with a slightly increased risk of wheeze and lower respiratory tract infections up to 18 months of age in population research (50328).
General
...Orally, ginkgo leaf extract is generally well tolerated when used for up to 6 years.
However, the seed and crude plant contain toxic constituents and should be avoided.
Intravenously, ginkgo leaf extract seems to be well tolerated when used for up to 30 days.
Topically, no adverse effects have been reported with ginkgo as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dizziness, gastrointestinal symptoms, headache.
Serious Adverse Effects (Rare):
Orally: Arrhythmia, bleeding, Stevens-Johnson syndrome.
Cardiovascular
...Cardiac arrhythmias suspected to be related to ginkgo have been reported.
Internationally, there are at least 162 reports from 18 countries, with 34% of cases considered serious, involving five deaths and four life-threatening events. Additionally, a report from Canada found that 10 out of 15 cases of arrhythmia were considered serious. Ginkgo was the only suspect ingredient in 57% of all international reports, with symptoms generally presenting within days of initiation. The most common symptoms included palpitations, tachycardia, bradycardia, syncope, and loss of consciousness. Most cases were reported to be related to oral use of ginkgo leaf products; however, some cases were associated with oral use of the seed, and others with intravenous or intramuscular use of the leaf. Documented discontinuation of ginkgo led to recovery in approximately 84% of cases where ginkgo was the sole suspect. Despite these findings, ginkgo cannot be confirmed as the causal agent. It is possible that these reports are confounded by underlying co-morbidities. Of the reported cases, the main reason for ginkgo use was tinnitus, a symptom commonly associated with pre-existing arrhythmias (105253,105254). Despite this large number of reports, only three cases of cardiac arrhythmia have been published in the literature (105253,105254). In one case, frequent nocturnal episodes of paroxysmal atrial fibrillation were reported for a 35-year-old female taking ginkgo extract 240 mg daily orally for 2 months. Arrythmias ceased following discontinuation of ginkgo (87884).
Increases in blood pressure were commonly reported with ginkgo in a safety database analysis; however, information on the magnitude of the increase was limited, and reports included both oral and intravenous administration (115628).
In one clinical trial, the rate of ischemic stroke and transient ischemic attacks was significantly higher in patients taking ginkgo extract orally when compared with placebo (16635). It is unclear if these events were due to ginkgo, other factors, or a combination.
Dermatologic ...Topically, ginkgo fruit pulp can cause contact dermatitis, with intense itching, edema, papules, and pustules which take 7-10 days to resolve after stopping contact (112946).
Gastrointestinal
...Orally, ginkgo extract may cause mild gastrointestinal discomfort or pain (3965,8543,17112,87818,87858), nausea and vomiting (8543,17112,87728,87844,87858), diarrhea (87844), dry mouth (17112), and constipation (5719,87787).
However, post-market surveillance suggests that the incidence of these events is relatively low, occurring in less than 2% of patients (88007).
Fresh ginkgo seeds can cause stomach ache, nausea, vomiting, or diarrhea. Ingesting roasted seeds in amounts larger than the normal food amounts of 8-10 seeds per day, or long-term, can also cause these same adverse reactions (8231,8232).
Genitourinary ...Orally, ginkgo extract has been reported to cause blood in the urine (87858,115628).
Hematologic
...Spontaneous bleeding is one of the most concerning potential side effects associated with ginkgo.
There are several published case reports linking ginkgo to episodes of minor to severe bleeding; however, not all case reports clearly establish ginkgo as the cause of bleeding. In most cases, other bleeding risk factors were also present including taking other medications or natural medicines, old age, liver cirrhosis, recent surgery, and other conditions. In most cases, bleeding occurred after several weeks or months of taking ginkgo (13135). Large-scale clinical trials and a meta-analysis evaluating standardized ginkgo leaf extracts show that the incidence of bleeding in patients taking ginkgo is not significantly higher than in those taking placebo (16634,16635,17179,17402).
There are several case reports of intracerebral bleeding. Some of these cases resulted in permanent neurological damage and one case resulted in death (244,578,8581,13135,13179,14456,87868,87977).
There are at least 4 cases of ocular bleeding including spontaneous hyphema (bleeding from the iris into the anterior part of the eye) and retrobulbar hemorrhage associated with ginkgo use (579,10450,13135).
There are also cases of surgical and post-surgical complications in patients using ginkgo. Retrobulbar hemorrhage (bleeding behind the eye) during cataract surgery has been associated with ginkgo use (10450). Excessive postoperative bleeding requiring transfusion has also occurred following laparoscopic surgery in a patient who had been taking ginkgo leaf extract (887). There have also been two cases of excessive bleeding during surgery and post-surgical hematoma in patients undergoing rhytidoplasty and blepharoplasty (13002). In another case, an elderly patient taking ginkgo experienced excessive postoperative bleeding following total hip arthroplasty (13194). In another case, use of ginkgo following liver transplantation surgery was associated with subphrenic hematoma requiring evacuation by laparotomy. The patient also subsequently experienced vitreous hemorrhage (14315). In another case, an elderly patient who had taken ginkgo chronically experienced excessive post-operative bleeding following an ambulatory surgical procedure (14453).
In another case, an elderly man experienced nose bleeds and ecchymosis following use of ginkgo. One case of diffuse alveolar hemorrhage in a female taking ginkgo and ginseng for over one year has been reported (95670). These instances of bleeding stopped when ginkgo was discontinued, and recurred when the patient started taking ginkgo again (13135).
Persistent bleeding has also occurred following dental surgery (87862) and laparoscopic cholecystectomy (88000). Nosebleed has also been reported as an adverse effect in a clinical trial (87813).
Immunologic ...Orally, ginkgo leaf extract can cause allergic skin reactions in some patients (14449,15578,112946). In one case, a patient developed acute generalized exanthematous pustulosis 48 hours after taking a single-ingredient ginkgo product. The rash resolved within 10 days after discontinuing ginkgo (14449). In another case, progressive erythema of the face, neck, trunk, and extremities occurred after two 60 mg oral doses of ginkgo extract (112946). There is also a case of Stevens-Johnson syndrome following a second administration of a preparation containing ginkgo leaf extract, choline, vitamin B6, and vitamin B12 (208). In another case, systemic edema and severe arthralgia was reported after contact with a ginkgo tree nut and manifested as multifocal lymphadenopathy associated with an allergic reaction on PET/CT scan imaging (95672).
Musculoskeletal ...Edema has been reported for three patients treated with ginkgo extract 40 mg orally three times daily (87818).
Neurologic/CNS ...Orally, ginkgo extract may cause headache (6220,8543,87818), dizziness (5719,87818), increased desire to sleep (87839,115628), and sedation (10893) in some patients. In addition, although ginkgo leaf and ginkgo leaf extract contain only small amounts of ginkgotoxin, there are anecdotal reports of seizure occurring after use of ginkgo leaf preparations both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,11296,14281).
Ocular/Otic
...Orally, ginkgo may cause tinnitus is some patients (8543,115628).
Topically, eye drops containing ginkgo extract and hyaluronic acid may cause stinging sensations in some people (87829).
Psychiatric ...Orally, ginkgo has been associated with a single case of mood dysregulation. A 50-year-old female with schizophrenia developed irritability, difficulty controlling anger, and agitation after one week of taking ginkgo 80 mg twice daily. The mood changes resolved within 2-3 days of discontinuation. When ginkgo was re-trialed at a later date, the same symptoms reappeared, and again dissipated after discontinuation of the ginkgo product. The relationship between ginkgo and mood dysregulation was considered to be "probable" based on the Naranjo adverse drug reaction probability scale (96763); however, the exact mechanism by which ginkgo may have affected mood regulation is unknown.
General
...Orally, huperzine A seems to be well tolerated.
There is currently a limited amount of information about the tolerability of intramuscular huperzine A.
Most Common Adverse Effects:
All ROAs: Huperzine A can cause dose-dependent cholinergic side effects such as blurred vision, constipation, diarrhea, dizziness, dry mouth, insomnia, nausea, sweating, and vomiting.
Cardiovascular ...Orally, huperzine A might cause decreased heart rate (3138,93482). There are two cases reported where consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including hypertension (13193).
Gastrointestinal ...Orally, huperzine A can cause cholinergic side effects such as nausea, vomiting, diarrhea, and anorexia (93480,93481,93482,93483). Constipation and thirst have also been reported (93482,93483). In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including vomiting and diarrhea (13193).
Musculoskeletal ...In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including leg cramps (13193).
Neurologic/CNS ...Orally, huperzine A can cause cholinergic side effects such as dizziness (3140,55613,93481,93482) and sweating (93482). Huperzine A can also cause hyperactivity and insomnia (3138,3140,55613,93482). Fainting has also been reported (4624). In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including sweating and slurred speech (13193).
General
...Orally, intravenously, and as an inhalation, N-acetyl cysteine is generally well-tolerated when used in typical doses.
Most adverse effects to N-acetyl cysteine occur when single doses of greater than 9 grams are used or when a regimen of greater than 30 grams daily is followed.
Most Common Adverse Effects:
Orally: Diarrhea, dry mouth, dyspepsia, heartburn, loss of appetite, nausea, and vomiting.
Intravenously: Skin rash and hypersensitivity reactions.
Inhaled: Bronchospasm, cough, epigastric pain, throat irritation, and wheezing.
Serious Adverse Effects (Rare):
Orally: Chest tightness, hemoptysis, and palpitations have been reported.
Intravenously: Anaphylaxis, angina, dystonic reactions, tachycardia, and transient sinus bradycardia have been reported.
Cardiovascular
...Intravenously, N-acetyl cysteine has been reported to significantly increase systolic and diastolic blood pressure after exposure to nitroglycerin when compared with placebo (2280).
Tachycardia, chest pain, angina, and transient sinus bradycardia have been rarely reported after administration of intravenous N-acetyl cysteine (2280,7872,64658).
Intratracheally, infants receiving 5% N-acetyl cysteine every four hours for chronic lung disease have developed bradycardia (64490).
Orally, palpitations and chest tightness have been reported rarely in clinical research evaluating oral N-acetyl cysteine at doses up to 600 mg twice daily (64675,64717,64762).
Dermatologic
...Orally, N-acetyl cysteine may cause hives (64713,64739,64813), flushing (2260,64715), and edema (64714).
Rash has also been reported (64510,64715,64717,102656). In one study, flushing was reported in 2% of patients receiving 600 mg of N-acetyl cysteine orally twice daily for six months (2260).
Intravenously, N-acetyl cysteine may cause rash, and the occurrence seems to be more common than with oral use (2254,64492,64562,64658,64759,64794). Hives (2280,64794), facial edema (2280), flushing (64412), and pruritus (64658,64763) have also been reported. In a small case series of 10 healthy male patients receiving 150 mg/kg of intravenous N-acetyl cysteine for muscle fatigue, erythema was experienced 30 minutes after infusion. Other side effects reported by these patients include facial erythema, palmar erythema, and sweating (64763). In other clinical research, three patients developed an erythematous flare at the sites of previous venipunctures after receiving 5.5 gm/m2 of N-acetyl cysteine with doxorubicin therapy (64712). Pain, inflammation, and excoriation of the skin have been reported after a 20% N-acetyl cysteine solution leaked from the catheter in one patient (64726).
Gastrointestinal
...Orally, gastrointestinal complaints are the most common adverse effects reported with N-acetyl cysteine.
These include heartburn (64608,64715,64717,64738,64739,102666), dyspepsia (1710,64715,64717,64724,64738), and epigastric pain (2260,10429,64715,64717). In one case report, esophagitis related to ulcerations occurred following intake of N-acetyl cysteine while in the supine position with inadequate water (102655). Other common side effects include loss of appetite (64715,64812), flatulence (2256,64510), diarrhea (64713,64715,97049), constipation (64715), dry mouth (64715,64724), nausea (7868,11430,64715,64724,64738,64812,97049), vomiting (64717,64724,64715,97049), gastric upset (64510,64545,97045,97049), acid reflux (108450), changes in bowel habits (108450), and intolerance to taste and odor (64510,64545). N-acetyl cysteine's unpleasant odor makes it difficult for some patients to take orally. Using a straw to drink N-acetyl cysteine solutions can improve tolerability. Additionally, placement of a nasogastric or duodenal tube and administration of metoclopramide or ondansetron can be helpful for patients unable to tolerate oral N-acetyl cysteine (17).
Intravenously, N-acetyl cysteine may cause diarrhea (64712), dyspepsia, nausea, vomiting (64763), mild gastrointestinal upset (102657), and metallic taste (64763).
When inhaled, N-acetyl cysteine may cause epigastric pain and throat irritation (64703,64707,64674).
Genitourinary ...Orally, dysuria was reported in 2% of patients receiving 600 mg of N-acetyl cysteine twice daily for 6 months in one clinical trial (2260).
Hematologic
...In general, hematologic adverse reactions are reported more frequently with intravenous N-acetyl cysteine compared with oral use.
In surgical patients, decreased prothrombin time (1341,64511), prolonged coagulation time (64511), increased blood loss (64511,64644), and decreased platelet aggregation (64511) have been reported after administration of IV N-acetyl cysteine. In one clinical trial, six healthy patients were administered a loading dose of IV N-acetyl cysteine 10 mg/kg followed by 10 mg/kg per hour for 32 hours. All patients experienced a decrease in prothrombin time by 30% to 40%. The decrease prothrombin time (25.4 sec to 20.6 sec) reached a steady state after 16 hours (1341). In a clinical trial evaluating patients with acute myocardial infarction, hemorrhage occurred in three patients taking intravenous N-acetyl cysteine 10 mg/min, heparin (per study protocol), and aspirin (7872). Two pediatric patients receiving intravenous N-acetyl cysteine (loading dose: 140 mg/kg followed by 70 mg/kg) experienced episodes of coagulopathy; however, patients were being treated for acetaminophen overdose (64794).
Hemoptysis was reported in six patients receiving 200 mg of N-acetyl cysteine orally twice daily for 6 months for treatment of chronic bronchitis (64739).
Immunologic
...Orally, anaphylaxis to N-acetyl cysteine has been rarely reported (64794).
However, anaphylactic reactions to intravenous N-acetyl cysteine appear to be more common (1716,64412,64449,64628,64710,64711,64721,64786,64789).
Anaphylactic reactions to N-acetyl cysteine have involved rash, angioedema, hypotension, and bronchospasm (64449,64711,64720). The mechanism of this reaction is unclear, but some data suggest it is not an immunologic hypersensitivity reaction but rather an acute toxic effect of N-acetyl cysteine (64786,64641,64720). Management guidelines for the treatment of anaphylactoid reactions to intravenous N-acetyl cysteine have been published. In most cases, treatment is not required or treatment with diphenhydramine or salbutamol is sufficient to continue or restart N-acetyl cysteine infusion. Antihistamines are useful in controlling and preventing recurrence of anaphylactoid symptoms (1716).
Musculoskeletal ...In one clinical trial, joint pain was reported in more than 15% of patients receiving oral N-acetyl cysteine (64608). In other research, one patient experienced pain in the legs while taking 600 mg of N-acetyl cysteine twice daily for the treatment of chronic bronchitis (64762).
Neurologic/CNS
...Orally, headache has been frequently reported with N-acetyl cysteine in clinical research (7873,11430,64510,64608,64672,64713,64715,64724,64762).
Other less common adverse effects reported in patients taking oral N-acetyl cysteine at a total daily dose of 600-1200 mg include dizziness (64715,64717,64724,64762), tiredness (64675,64717), vivid dreams (102666), disorientation, and inability to concentrate (64673). One pediatric patient receiving oral N-acetyl cysteine (loading dose: 140 mg/kg followed by 70 mg/kg) experienced encephalopathy (64794).
Intravenously, N-acetyl cysteine has been associated with rare neurologic adverse reactions , including headache (7872), lightheadedness (64763), and dystonic reactions (64794). In a previously healthy 2-year-old female, status epilepticus occurred during intravenous N-acetyl cysteine therapy for paracetamol ingestion (64781). Increased deterioration in bulbar function in patients with amyotrophic lateral sclerosis has also been reported with IV N-acetyl cysteine (2254).
Ocular/Otic ...While rare, blurred vision has been reported in research on oral N-acetyl cysteine (64715). Additionally, in a previously healthy 2-year-old female, status epilepticus followed by cortical blindness occurred during intravenous N-acetyl cysteine therapy for paracetamol ingestion. In this case, vision was almost completely recovered 18-months later (64781).
Psychiatric ...Intravenously, dysphoria was experienced 30 minutes after infusion of N-acetyl cysteine in 8 of 10 healthy males assessed in one clinical study (64763).
Pulmonary/Respiratory
...Respiratory adverse reactions to N-acetyl cysteine are most commonly reported with inhalable dosage forms.
These include wheezing (64455,64707), bronchospasm (64455,64699), and cough (64455,64456,64703,64811). While less frequent, wheezing (64675), bronchospasm (64675), increased sputum production (7868), cough (7868,64510), decreased peak flow (64510), dyspnea (64714), and cold symptoms (64510) have been reported with oral N-acetyl cysteine in clinical research. A few cases of wheezing (64718,64719), cough (64763), and bronchospasm (64658) have also been reported with intravenous N-acetyl cysteine. Additionally, respiratory arrest has been reported in one case where a 16 year-old female was being treated for acetaminophen toxicity with intravenous N-acetyl cysteine (64450).
Two premature infants receiving 5% N-acetyl cysteine via intratracheal instillation for the treatment of chronic lung disease had an increased frequency of cyanotic spells (64490).
Other ...Injection site reactions, including burning and phlebitis, have been reported in patients receiving IV N-acetyl cysteine (1341,64763). Fever associated with IV N-acetyl cysteine was reported in one patient during clinical research (64759).
General
...Orally, phosphatidylserine is generally well tolerated.
Most Common Adverse Effects:
Orally: Flatulence, gastrointestinal upset, headache, insomnia, and nausea.
Gastrointestinal ...Orally, phosphatidylserine can cause gastrointestinal upset such as flatulence or nausea. Gastrointestinal upset can occur at doses of 200-300 mg/day (7116,7121,15539,68862,90711).
Neurologic/CNS ...Orally, phosphatidylserine can cause insomnia. Insomnia is more likely to occur with a higher dose of 600 mg (7121,68844). Headache has also been reported (90711).
General
...In foods, resveratrol is well tolerated.
When used orally in higher doses, as well as topically or intranasally, resveratrol seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal discomfort, and loose stools.
Dermatologic
...Orally, there is one case of a pruritic skin rash that occurred in a clinical trial.
The rash resolved two weeks after stopping resveratrol (109163).
Topically, a case of allergic contact dermatitis has been reported after applying a facial cream (Resveratrol BE, Skinceuticals) containing aqueous resveratrol 1% in combination with Baikal skullcap root extract 0.5%. Patch testing identified a positive reaction to both ingredients (110024).
Gastrointestinal ...Orally, mild gastrointestinal discomfort with increased diarrhea or loose stools has been reported, especially when resveratrol is taken in doses of 2. 5-5 grams daily (71042,71052,91327,95830,109163,109164,109167).
Hematologic ...In one clinical study, a patient developed severe febrile leukopenia and thrombocytopenia after taking oral resveratrol 500 mg three times daily for 10 days. Upon re-exposure to resveratrol, febrile leukopenia recurred (109163).
Musculoskeletal ...Orally, resveratrol has been associated with muscle cramps in patients on peritoneal dialysis. The causality of this adverse effect has not been established (95830).
Neurologic/CNS ...Orally, resveratrol has been associated with headache, fatigue, and memory loss in patients on peritoneal dialysis. The causality of these adverse effects has not been established (95830).
General
...Orally and intravenously, vinpocetine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dizziness, headache, flushing, gastric discomfort, sleep disturbances, and urticaria.
Serious Adverse Effects (Rare):
Orally: Agranulocytosis, arrhythmias, and seizures.
Intravenously: Arrhythmias.
Cardiovascular ...Orally, tachycardia, multifocal extra systoles, transient hypotension and hypertension, and palpitations have been reported with vinpocetine in clinical trials (1789,82118,82152,92936). One case of severe hypotension has been reported with oral vinpocetine (106845). Vinpocetine has also been reported to cause atrial fibrillation and ventricular arrhythmias, with the highest incidence occurring after intravenous or intramuscular administration (1789,82128,68753,82123).
Dermatologic ...Orally, vinpocetine has been reported to cause flushing, skin rash, and urticaria (82118,82120,82153,106845). Intravenously, vinpocetine has been associated with one report of allergic dermatitis (98226).
Gastrointestinal ...Orally, gastric discomfort, upper abdominal pain, nausea, diarrhea, constipation, vomiting, heartburn, difficulty swallowing, and dry mouth have been reported with vinpocetine (1787,1789,10061,10221,82120,82154,82155,92936,106845). Intravenously, diarrhea has been reported with vinpocetine (98226).
Hematologic ...Orally, vinpocetine has been associated with one case report of agranulocytosis (82156) and one case report of ecchymoma of the eyelid in a 60-year-old male 12 hours after a botulinum toxin injection. The patient had been taking vinpocetine 30 mg daily and aspirin 100 mg daily (112878).
Neurologic/CNS ...Orally, anxiety, drowsiness, headache, sleep disturbance, nervousness, excitation, hyperirritability, epileptiform convulsion, and vertigo have been reported with vinpocetine (1787,10221,68772,82118,82120,82151,82152,82154,92936,106845). Intravenously, dizziness has been reported with vinpocetine (98226).
Ocular/Otic ...Orally, vinpocetine has been associated with one case of eyelid edema (106845). Also, one case reports ecchymoma of the eyelid in a 60-year-old male 12 hours after a botulinum toxin injection. The patient had been taking vinpocetine 30 mg daily and aspirin 100 mg daily (112878).
Pulmonary/Respiratory ...Orally, vinpocetine has been associated with one case of severe dyspnea (106845).
General
...Orally, intramuscularly, and topically, vitamin B12 is generally well-tolerated.
Most Common Adverse Effects:
Intramuscular: Injection site reactions.
Serious Adverse Effects (Rare):
Intramuscularly: Severe hypokalemia has been rarely linked with correction of megaloblastic anemia with vitamin B12.
Cardiovascular ...In human clinical research, an intravenous loading dose of folic acid, vitamin B6, and vitamin B12, followed by daily oral administration after coronary stenting, increased restenosis rates (12150). Hypertension following intravenous administration of hydroxocobalamin has been reported in human research (82870,82864).
Dermatologic
...Orally or intramuscularly, vitamin B12 can cause allergic reactions such as rash, pruritus, erythema, and urticaria.
Theoretically, allergic reactions might be caused by the cobalt within the vitamin B12 molecule (82864,90373,90381,103974). In one case report, oral methylcobalamin resulted in contact dermatitis in a 59-year-old Japanese female with a cobalt allergy (103974). In another case report, a 69-year-old female developed a symmetrical erythematous-squamous rash for 5 years after oral vitamin B12 supplementation for 10 years. A patch test confirmed that the systemic allergic dermatitis was due to vitamin B12 supplementation, which resolved 3 months after discontinuation (114578).
Vitamin B12 (intramuscular or oral) has also been associated with at least 19 cases of acneiform eruptions which resolved upon discontinuation of vitamin B12 (90365,90369,90388). High-dose vitamin B12 (20 mcg daily) and vitamin B6 (80 mg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may last up to four months after the supplement is stopped and can be treated with systemic corticosteroids and topical therapy (10998,82870,82871).
Gastrointestinal ...Intravenously, vitamin B12 (hydroxocobalamin) 2. 5-10 grams can cause nausea and dysphagia (82864).
Genitourinary ...Intravenously, vitamin B12 (hydroxocobalamin) 5-15 grams has been associated with chromaturia in clinical research (82870,82871,112282,112264).
Hematologic ...According to case report data, the correction of megaloblastic anemia with vitamin B12 may result in fatal hypokalemia (82914).
Musculoskeletal ...According to case report data, correction of megaloblastic anemia with vitamin B12 has precipitated gout in susceptible individuals (82879).
Neurologic/CNS ...Treatment with vitamin B12 has been rarely associated with involuntary movements in infants with vitamin B12 deficiency (90370,90385,90397). In some cases these adverse reactions were misdiagnosed as seizures or infantile tremor syndrome (90370,90385). These adverse reactions presented 2-5 days after treatment with vitamin B12 and resolved once vitamin B12 was discontinued (90370,90385,90397).
Oncologic ...Although some epidemiological research disagrees (9454), most research has found that elevated plasma levels of vitamin B12 are associated with an increased risk of various types of cancer, including lung and prostate cancers and solid tumors (50411,102383,107743). One study found, when compared with blood levels of vitamin B12 less than 1000 ng/mL, plasma vitamin B12 levels of at least 1000 ng/mL was strongly associated with the occurrence of solid cancer (107743). It is unclear if increased intake of vitamin B12, either through the diet or supplementation, directly affects the risk of cancer. It is possible that having cancer increases the risk of vitamin B12 elevation. However, one observational study has found that the highest quintile of dietary intake of vitamin B12 is associated with a 75% increased incidence of developing esophageal cancer when compared with the lowest quintile in never drinkers, but not drinkers (107147).
Renal ...There is a case report of oxalate nephropathy in a 54-year-old male which was determined to be related to the use of intravenous hydroxocobalamin as treatment for cyanide poisoning. Intermittent hemodialysis was started 5 days after admission, along with a low-oxalate diet, oral calcium acetate, and pyridoxine 5 mg/kg daily (107148). A review of the use of intravenous hydroxocobalamin for suspected cyanide poisoning in 21 intensive care units in France between 2011 and 2017 resulted in a 60% increased odds of acute kidney injury and a 77% increased odds of severe acute kidney injury in the first week. However, biopsies were not conducted and a direct link with use of hydroxocobalamin could not be made (107139).
Other ...Several studies have found that higher vitamin B12 levels may be associated with increased mortality or decreased survival rates in hospitalized elderly patients (82889,82812,82857,82895). Human research has also found a positive correlation between vitamin B12 status and all-cause mortality in Pima Indians with diabetes (82863).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Daily doses of 100 mg or less are unlikely to cause these problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).