Ingredients | Amount Per Serving |
---|---|
(Calcium Ascorbate)
(Vitamin C (Form: as Calcium Ascorbate) )
|
100 mg |
(D-Alpha-Tocopherol)
|
11 mg |
(Thiamine Mononitrate)
(Thiamin (Form: as Thiamine Mononitrate) )
|
5 mg |
(Niacinamide)
(Niacin (Form: as Niacinamide) )
|
300 mg |
(Pyridoxine Hydrochloride)
(Vitamin B6 (Form: as Pyridoxine HCl) )
|
5 mg |
(Methylcobalamin)
(Vitamin B12 (Form: as Methylcobalamin) )
|
100 mcg |
(D-Biotin)
(Biotin (Form: as D-Biotin) )
|
1000 mcg |
(Calcium D-Pantothenate)
(Pantothenic Acid (Form: as Calcium D-Pantothenate) )
|
25 mg |
(as Magnesium Malate)
(Magnesium (Form: as Magnesium Malate) )
|
200 mg |
(as Methylselenocysteine)
(Selenium (Form: as Methylselenocysteine) )
|
10 mcg |
(from Manganese Citrate)
(Manganese (Form: from Manganese Citrate) )
|
1 mg |
(Cr)
|
200 mcg |
(Saccharomyces cerevisiae )
|
100 mg |
(Momordica charantia )
(wild genotype)
(Glycostat wild Bitter Melon extract Genus: Momordica Species: charantia Note: wild genotype )
|
750 mg |
(Gymnema sylvestre )
(75% Gymnemic Acids)
(Gymnema sylvestre (Form: 75% Gymnemic Acids Note: 225 mg) Genus: Gymnema Species: sylvestre )
|
300 mg |
200 mg | |
(Eucalyptus globulus )
(leaf)
|
100 mg |
100 mg | |
(Polygonum cuspidatum)
|
50 mg |
(leaf)
(1% Corosolic Acid)
(Banaba leaf extract (Form: 1% Corosolic Acid Note: 0.48 mg) PlantPart: leaf )
|
48 mg |
Cellulose, Calcium Phosphate (Alt. Name: Ca Phosphate), modified Food Starch, Magnesium Stearate Note: vegetable source, Silicon Dioxide (Alt. Name: SiO2), food-grade Coating
Below is general information about the effectiveness of the known ingredients contained in the product Glucose Optimizer. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Glucose Optimizer. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Alpha-lipoic acid has been used with apparent safety in doses of up to 2 grams daily for 3 months to 2 years. Lower doses of 600 mg daily have been used with apparent safety for up to 4 years (3540,3541,3542,20479,96449,97630,101867,101869,103327,103333)(103335,104651,104660,113892,113897). ...when used topically and appropriately. A cream containing alpha-lipoic acid 5% has been used with apparent safety in clinical trials lasting up to 12 weeks (12021). ...when given intravenously and appropriately. Intravenous alpha-lipoic acid has been used safely in doses of up to 6000 mg weekly in clinical trials lasting up to 3 weeks (3540,3557,10148,12106).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Alpha-lipoic acid has been used with apparent safety in doses of up to 600 mg daily for 3 months in children aged 10-17 years (103330).
CHILDREN: POSSIBLY UNSAFE
when used orally in amounts over 600 mg daily.
At least five cases of alpha-lipoic acid intoxication have been reported for children aged 14 months to 16 years who consumed alpha-lipoic acid at doses up to 226 mg/kg (approximately 2400 mg). Symptoms of alpha-lipoic acid-induced intoxication included seizures, acidosis, vomiting, and unconsciousness (90444,96227,96234,104653).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Alpha-lipoic acid has been used safely during pregnancy at doses up to 600 mg daily for up to 4 weeks (96222).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when banaba extract is used orally and appropriately, short-term (11954,92848,92849). A specific banaba extract (Glucosol) has been safely used at doses of 32-48 mg daily for 2 weeks (11954). Another specific product containing extracts of banaba leaf and Padang cassia (Inlacin, Dexa Medica) has been safely used at doses up to 100 mg daily for 12 weeks (92848,92849). There is insufficient reliable information available about the safety of banaba extract when used long-term.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Biotin has been safely used in doses up to 300 mg daily for up to 6 months. A tolerable upper intake level (UL) has not been established (1900,6243,95662,102965). ...when applied topically as cosmetic products at concentrations of 0.0001% to 0.6% biotin (19344).
POSSIBLY SAFE ...when used intramuscularly and appropriately (8468,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at adequate intake doses of 5-25 mcg daily for up to 6 months (173,6243,19347,19348,111365). A tolerable upper intake level (UL) has not been established.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at the adequate intake (AI) dose of 30 mcg daily during pregnancy and 35 mcg daily during lactation. It has also been used in supplemental doses of up to 300 mcg daily (6243,7878). A tolerable upper intake level (UL) has not been established.
POSSIBLY SAFE ...when the fruit is used orally and appropriately, short-term. Powdered bitter melon fruit 0.5-12 grams daily for up to 4 months has been used (92126,100631,100632,109583). Extracts of bitter melon fruit have also been used safely for up to 3 months (36,15566,106408). There is insufficient reliable information available about long-term use of bitter melon or the safety of bitter melon when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research shows that two proteins isolated from the raw fruit of bitter melon possess abortifacient properties (3724,35719,35722,35728). Also, one animal study shows that bitter melon juice significantly reduces the fertility rate of mice (35728). However, these effects of bitter melon have not been assessed in humans.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term (7845,16117). A specific dried, inactive brewer's yeast preparation (EpiCor, Embria Health Sciences) has been used with apparent safety at a dose of 500 mg once daily for 12 weeks (92821,92822). A specific living brewer's yeast strain CNCM I-3856 has been used with apparent safety at a dose of 500-1000 mg daily (standardized to 8 billion colony-forming units per gram) for up to 12 weeks (95611,105170,111108). There is insufficient reliable information available about the safety of the long-term use of brewer's yeast or about the safety of using brewer's yeast topically.
CHILDREN:
There is insufficient reliable information available about the safety of brewer's yeast as a probiotic or postbiotic in children of any age.
Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chromium has been safely used in doses up to 1000 mcg daily for up to 6 months (1934,5039,5040,6858,6859,6860,6861,6862,6867,6868)(7135,7137,10309,13053,14325,14440,17224,90057,90061)(90063,94234,95095,95096,95097,98687); however, most of these studies have used chromium doses in a range of 150-600 mcg. The Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, long-term. Chromium has been safely used in a small number of studies at doses of 200-1000 mcg daily for up to 2 years (7060,7135,42618,42628,42666,110605,110607,110609). However, the Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts not exceeding the daily adequate intake (AI) levels by age: 0-6 months, 0.
2 mcg; 7-12 months, 5.5 mcg; 1-3 years, 11 mcg; 4-8 years, 15 mcg; males 9-13 years, 25 mcg; males 14-18 years, 35 mcg; females 9-13 years, 21 mcg; females 14-18 years, 24 mcg (7135). POSSIBLY SAFE...when used orally and appropriately in amounts exceeding AI levels. Chromium 400 mcg daily has been used safely for up to 6 weeks (42680).
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for pregnancy is 28 mcg daily for those 14-18 years of age and 30 mcg daily for those 19-50 years of age (7135).
PREGNANCY: POSSIBLY SAFE
when used orally in amounts exceeding the adequate intake (AI) levels.
There is some evidence that patients with gestational diabetes can safely use chromium in doses of 4-8 mcg/kg (1953); however, patients should not take chromium supplements during pregnancy without medical supervision.
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for lactation is 44 mcg daily for those 14-18 years of age and 45 mcg daily for those 19-50 years of age (7135). Chromium supplements do not seem to increase normal chromium concentration in human breast milk (1937). There is insufficient reliable information available about the safety of chromium when used in higher amounts while breast-feeding.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Eucalyptus has Generally Recognized As Safe status (GRAS) for use in foods as a flavoring in the US (4912).
POSSIBLY SAFE ...when eucalyptol, a constituent of eucalyptus oil, is used orally and appropriately. Eucalyptol appears to be safe for up to 12 weeks (13302).
POSSIBLY UNSAFE ...when the undiluted oil is used topically. Prolonged or widespread exposure has caused neurotoxicity (12869). There is insufficient reliable information available about the safety of diluted eucalyptus oil when used topically.
LIKELY UNSAFE ...when the undiluted oil is ingested orally. Ingesting 3.5 mL of undiluted oil can be fatal in adults (12867). There is insufficient reliable information available about the safety of eucalyptus oil when inhaled as aromatherapy or when eucalyptus leaf is used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Eucalyptus has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
CHILDREN: LIKELY UNSAFE
when eucalyptus oil is used orally (12867,49002,107493,107495).
...when eucalyptus oil is used topically in infants and young children. There are reports of neurotoxicity in infants and young children exposed to topical eucalyptus oil. In one of these cases, a 12-month-old child was bathed in water containing eucalyptus oil and other essential oils; in another case, a child had a dressing containing eucalyptus oil applied every 2-4 hours daily for 2 days (12868,12869). ...when eucalyptus solutions are inhaled using a vaporizer (49002).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of medicinal amounts of eucalyptus oil; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Gymnema leaf extract has been used safely in doses of 200 mg twice daily for up to 20 months or 300 mg twice daily for 12 weeks (45,46,42604,105346).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally and appropriately. Oral manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily for adults 19 years and older (1994,7135). ...when used parenterally and appropriately. Parenteral manganese chloride and manganese sulfate are FDA-approved prescription products.
POSSIBLY UNSAFE ...when used orally in high doses. Doses exceeding 11 mg daily can cause significant adverse effects (7135). ...when used parenterally in moderate or high doses, long-term. Reports of neurotoxicity and Parkinson-like symptoms have been reported with parenteral nutrition manganese doses above 60 mcg daily. It is recommended that adults on long-term parenteral nutrition receive manganese in doses of no more than 55 mcg daily (99302).
LIKELY UNSAFE ...when inhaled in moderate doses, long-term. According to the US Occupational Safety and Health Administration (OSHA), the permissible exposure limit (PEL) for manganese is 5 mg/m3. Exposure to higher amounts of manganese dust or fumes has been associated with central nervous system toxicity, Parkinson-like symptoms, and poor bone health (61296,102516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Manganese is safe in children when used in daily doses less than the tolerable upper intake level (UL) of 2 mg in children 1-3 years, 3 mg in children 4-8 years, 6 mg in children 9-13 years, and 9 mg in children 14-18 years (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
Daily doses greater than the UL are associated with a greater risk of toxicity (7135).
CHILDREN: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Exposure to high amounts of manganese dust has been associated with central nervous system toxicity and Parkinson-like symptoms (61296).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily during pregnancy or lactation in those aged 19 or older. However, those under 19 years of age should limit doses to less than 9 mg daily (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses over the UL are associated with a greater risk of toxicity (7135). Additionally, observational research shows that adults with higher blood manganese levels have greater odds of delivering low birth weight or small for gestational age (SGA) male, but not female, infants (102515).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Manganese salts can cross the placenta, and animal research suggests that large amounts of manganese may be teratogenic (61296).
LIKELY SAFE ...when prescription products are used orally and appropriately (12033). ...when niacinamide supplements are taken orally in doses below the tolerable upper intake level (UL) set by the Institute of Medicine (IOM). The UL of niacinamide is 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243).
POSSIBLY SAFE ...when used orally in doses greater than 30 mg but less than 900 mg daily. The European Food Safety Authority has set the tolerable upper intake level (UL) of niacinamide at 900 mg daily (104937). However, oral niacinamide has been safely used in doses up to 1500 mg daily for 12 weeks in some clinical trials (25561,94188,98940,107709,110502) and up to 1000 mg daily for 12 months in other trials (93362,113559,113560). ...when used topically and appropriately for up to 16 weeks (5940,93360,110497,110498,110501,113681,113683,113684).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Niacinamide has been safely used in children for up to 7 years in doses below the tolerable upper intake level (UL) (4874,9957). The UL of niacinamide for children by age is: 1-3 years, 10 mg daily; 4-8 years, 15 mg daily; 9-13 years, 20 mg daily; 14-18 years, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL) for niacinamide.
The UL of niacinamide during pregnancy and lactation is 30 mg daily for those 14-18 years of age and 35 mg daily for those 19 years and older (6243). There is insufficient reliable information available about the safety of larger oral doses of niacinamide or topical niacinamide; avoid using.
LIKELY SAFE ...when used orally and appropriately. The pantothenic acid derivative calcium pantothenate has a generally recognized as safe (GRAS) status for use in food products (111258). While a tolerable upper intake level (UL) has not been established, pantothenic has been used in doses of 10-20 grams daily with apparent safety (15,6243,111258) ...when applied topically and appropriately, short-term. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and its derivatives are safe for use in cosmetic products in concentrations up to 5.3% (111258). Gels or ointments containing a derivative of pantothenic acid, dexpanthenol, at concentrations of up to 5%, have been used safely for up to 30 days (67802,67806,67817).
POSSIBLY SAFE ...when applied intranasally and appropriately, short-term. A dexpanthenol nasal spray has been used with apparent safety up to four times daily for 4 weeks (67826). ...when applied in the eyes appropriately, short-term. Dexpanthenol 5% eyedrops have been used with apparent safety for up to 28 days (67783). ...when injected intramuscularly and appropriately, short-term. Intramuscular injections of dexpanthenol 500 mg daily for up to 5 days or 250 mg weekly for up to 6 weeks have been used with apparent safety (67822,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately (15,6243).
Calcium pantothenate is generally recognized as safe (GRAS) when used as a food additive and in infant formula (111258). However, a tolerable upper intake level (UL) has not been established (15,6243). ...when applied topically and appropriately (67795,105190,111262). Infant products containing pantothenic acid and its derivatives have been used safely in concentrations of up to 5% for infant shampoos and 2.5% for infant lotions and oils. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and derivatives are safe for use in topical infant products. (111258).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during pregnancy is 6 mg (3094).
LACTATION: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during lactation is 7 mg (3094).
LIKELY SAFE ...when used in amounts found in foods (2030).
POSSIBLY SAFE ...when taken orally in doses of up to 1500 mg daily for up to 3 months (71066,71097,91328,91331,95825,95833,98910,100695,105183,109163,109167). Higher doses of 2000-3000 mg daily have been well tolerated when taken for 2-6 months, but are more likely to cause gastrointestinal side effects (91327,98908). ...when used topically for up to 30 days (71064). ...when used as an intranasal spray for up to 4 weeks (97339).
CHILDREN: LIKELY SAFE
when used in amounts found in foods.
CHILDREN: POSSIBLY SAFE
when used as an intranasal spray for up to 2 months in children 4 years of age and older (91332).
There is insufficient reliable information available about the safety of resveratrol when used by mouth in larger amounts as medicine.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts found in foods (2030).
Resveratrol is found in grape skins, grape juice, wine, and other food sources. However, wine should not be used as a source of resveratrol during pregnancy and lactation.
LIKELY SAFE ...when used orally and appropriately. Selenium appears to be safe when taken short-term in amounts below the tolerable upper intake level (UL) of 400 mcg daily (4844,7830,7831,7836,7841,9724,9797,14447,17510,17511)(17512,17513,17515,17516,97087,97943,109085); however, there is concern that taking selenium long-term might not be safe. Some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). Some evidence also shows that taking a selenium supplement 200 mcg daily for an average of 3-8 years increases the risk of developing type 2 diabetes (97091,99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661). ...when used intravenously. Selenium, as selenious acid, is an FDA-approved drug. Sodium selenite intravenous infusions up to 1000 mcg daily have been safely used for up to 28 days (90347,92910).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. Doses above 400 mcg daily can increase the risk of developing selenium toxicity (4844,7825). Additionally, some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). There is also concern that taking a selenium supplement 200 mcg daily long-term, for an average of 3-8 years, increases the risk of developing type 2 diabetes (99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Selenium seems to be safe when used short-term in doses below the tolerable upper intake level (UL) of 45 mcg daily for infants up to age 6 months, 60 mcg daily for infants 7 to 12 months, 40-90 mcg daily for children 1 to 3 years, 100-150 mcg daily for children 4 to 8 years, 200-280 mcg daily for children 9 to 13 years, and 400 mcg daily for children age 14 years and older (4844,86095); however, there is some concern that long-term use might not be safe. ...when used via a nasogastric tube in premature infants (7835,9764).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily (4844,17507,74419,74481,74391); however, there is concern that long-term use might not be safe.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844).
LACTATION: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily when taken short-term (4844,74467); however, there is concern that long-term use might not be safe.
LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844,7838). ...when used orally in HIV-positive women. Selenium supplementation in HIV-positive women not taking highly active antiretroviral therapy may increase HIV-1 levels in breast milk (90358).
LIKELY SAFE ...when used orally and appropriately. A tolerable upper intake level (UL) has not been established for thiamine, and doses up to 50 mg daily have been used without adverse effects (15,6243). ...when used intravenously or intramuscularly and appropriately. Injectable thiamine is an FDA-approved prescription product (15,105445).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 1.
4 mg daily. A tolerable upper intake level (UL) has not been established for healthy individuals (3094,6243).
LIKELY SAFE ...when used orally, topically, intravenously, intramuscularly, or intranasally and appropriately. Vitamin B12 is generally considered safe, even in large doses (15,1344,1345,1346,1347,1348,2909,6243,7289,7881)(9414,9416,10126,14392,15765,82832,82949,82860,82864,90386)(111334,111551).
PREGNANCY: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA for vitamin B12 during pregnancy is 2.6 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA of vitamin B12 during lactation is 2.8 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 while breastfeeding.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily in the form of pyridoxine for adults (15,6243). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 30 mg daily for children aged 1-3 years, 40 mg daily for 4-8 years, 60 mg daily for 9-13 years, and 80 mg daily for 14-18 years (6243).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (6243).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring. The tolerable upper intake level (UL) refers to vitamin B6 in the form of pyridoxine and is 80 mg daily for those aged 14-18 years and 100 mg daily for 19 years and older (6243).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 80 mg daily for those aged 14-18 years and 100 mg daily for those 19 years and older.
The recommended dietary allowance (RDA) in lactating women is 2 mg daily (6243). There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
LIKELY SAFE ...when used orally or topically and appropriately. Vitamin E is generally considered safe, even at doses exceeding the recommended dietary allowance (RDA); however, adverse effects are more likely to occur with higher doses. The tolerable upper intake level (UL) in healthy people is 1000 mg daily, equivalent to 1100 IU of synthetic vitamin E (all-rac-alpha-tocopherol) or 1500 IU of natural vitamin E (RRR-alpha-tocopherol) (4668,4681,4713,4714,4844,89234,90067,90069,90072,19206)(63244,97075). Although there is some concern that taking vitamin E in doses of 400 IU (form unspecified) per day or higher might increase the risk of adverse outcomes and mortality from all causes (12212,13036,15305,16709,83339), most of this evidence comes from studies that included middle-aged or older patients with chronic diseases or patients from developing countries in which nutritional deficiencies are prevalent.
POSSIBLY UNSAFE ...when used orally in high doses. Repeated doses exceeding the tolerable upper intake level (UL) of 1000 mg daily are associated with significant side effects in otherwise healthy people (4844). ...when used intravenously in large doses. Large repeated intravenous doses of all-rac-alpha-tocopherol (synthetic vitamin E) were associated with decreased activity of clotting factors and bleeding in one report (3074). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adults who use e-cigarette, or vaping, products, which often contain vitamin E acetate. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Vitamin E acetate has been detected in most bronchoalveolar lavage samples taken from patients with EVALI. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. While this association shows a correlation between vitamin E acetate inhalation and lung injury, a causal link has not yet been determined, and it is not clear if other toxic compounds are also involved (101061,101062,102970).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Vitamin E has been safely used in children in amounts below the tolerable upper intake level (UL). The UL for healthy children is: 200 mg in children aged 1-3 years, 300 mg in children aged 4-8 years, 600 mg in children aged 9-13 years, and 800 mg in children aged 14-18 years. A UL has not been established for infants up to 12 months of age (23388).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL due to increased risk of adverse effects (23388).
...when alpha-tocopherol is used intravenously in large doses in premature infants. Large intravenous doses of vitamin E are associated with an increased risk of necrotizing enterocolitis and sepsis in this population (85062,85083). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adolescents and teenagers who use e-cigarette, or vaping, products. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Constituents in E-cigarette or vaping products with the potential to cause lung injury or impaired lung function include lipids, such as vitamin E acetate. Vitamin E acetate has been detected in all bronchoalveolar lavage samples taken from patients with EVALI. No other ingredient, including THC or nicotine, was found in all samples, and other ingredients, including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable This shows that vitamin E acetate is at the primary site of lung injury. A causal link has not yet been described and it is not clear if other compounds are also involved (101061,101062).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
The tolerable upper intake level (UL) during pregnancy is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older. However, maternal supplementation is not generally recommended unless dietary vitamin E falls below the RDA (4260). No serious adverse effects were reported with oral intake of 400 IU per day starting at weeks 9-22 of pregnancy in healthy patients or those at high risk for pre-eclampsia (3236,97075), or with 600-900 IU daily during the last two months of pregnancy (4260). However, some preliminary evidence suggests that taking vitamin E supplements might be harmful when taken in early pregnancy. A case-control study found that taking a vitamin E supplement during the first 8 weeks of pregnancy is associated with a 1.7-9-fold increase in odds of congenital heart defects (16823). However, the exact amount of vitamin E consumed during pregnancy in this study is unclear. Until more is known, advise patients to avoid taking a vitamin E supplement in early pregnancy unless needed for an appropriate medical indication.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL during lactation is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older (4844).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts that exceed the UL due to increased risk of adverse effects (4844).
Below is general information about the interactions of the known ingredients contained in the product Glucose Optimizer. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, the antioxidant effects of alpha-lipoic acid might alter the effectiveness of alkylating agents.
The use of antioxidants like alpha-lipoic acid during chemotherapy is controversial. There are concerns that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as alpha-lipoic acid have on chemotherapy. Advise patients to consult their oncologist before using alpha-lipoic acid.
|
Theoretically, alpha-lipoic acid may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
In vitro, alpha-lipoic acid inhibits platelet aggregation (98682).
|
Theoretically, taking alpha-lipoic acid with antidiabetes drugs might increase the risk of hypoglycemia.
Although some small clinical studies have suggested that alpha-lipoic acid can lower blood glucose levels (3545,3874,3875,3876,20490,20493,104650), larger clinical studies in patients with diabetes have shown no clinically meaningful effect (20494,20495,20496,90443,90445,110118). Additionally, co-administration of single doses of alpha-lipoic acid and glyburide or acarbose did not cause detectable drug interactions in healthy volunteers (3870).
|
Theoretically, the antioxidant effects of alpha-lipoic acid might alter the effectiveness of antitumor antibiotics.
The use of antioxidants like alpha-lipoic acid during chemotherapy is controversial. There are concerns that antioxidants could reduce the activity of antitumor antibiotic drugs, which work by generating free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as alpha-lipoic acid have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using alpha-lipoic acid.
|
Theoretically, alpha-lipoic acid might decrease the effects of thyroid hormone drugs.
Animal research suggests that co-administration of thyroxine with alpha-lipoic acid reduces conversion into the active T3 form (8946).
|
Theoretically, concomitant use of banaba and hypoglycemic drugs might have additive effects.
|
Theoretically, concomitant use of banaba and antihypertensive drugs might cause additive effects.
|
Theoretically, concomitant use of banaba with substrates of OATP might reduce the bioavailability of the OATP substrate.
In vitro research shows that banaba inhibits OATP, particularly OATP2B1 (35450). OATPs are expressed in the small intestine and liver and are responsible for the absorption of drugs and other compounds.
|
Taking bitter melon with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, bitter melon might increase levels of P-glycoprotein substrates.
Bitter melon might inhibit the p-glycoprotein (P-gp) intestinal pump and increase intracellular levels of P-gp substrates. In vitro research in intestinal cells shows that 1-monopalmitin, a constituent of bitter melon, increases levels of daunomycin, a P-gp substrate (97509). Additionally, drinking bitter melon juice has been associated with a case of acute pancreatitis in a patient who had been taking pazopanib, a P-gp substrate, for 8 years. Researchers theorize that inhibition of P-gp led to increased levels of pazopanib, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, bitter melon might increase levels of pazopanib, potentially increasing the risk of adverse effects.
In one case, a 65-year-old patient taking pazopanib for 8 years for renal cell carcinoma experienced signs and symptoms consistent with acute pancreatitis 4 days after drinking bitter melon juice at a dose of 100-150 mL daily. The patient's symptoms, amylase levels, and lipase levels improved upon discontinuation of bitter melon and pazopanib. Pazopanib treatment was re-initiated with no further evidence of pancreatitis. Researchers theorize that inhibition of P-glycoprotein by bitter melon led to increased levels of pazopanib, a P-glycoprotein substrate, resulting in pazopanib-induced pancreatitis (109581).
|
Taking brewer's yeast with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research shows that taking chromium-containing brewer's yeast can decrease levels of blood glucose in diabetic patients being treated with antidiabetes drugs (37157).
|
Theoretically, taking antifungals with some brewer's yeast products might decrease the effectiveness of brewer's yeast.
Some brewer's yeast products contain live yeast. Therefore, simultaneously taking antifungals might kill a significant number of the organisms (4363).
|
Theoretically, taking brewer's yeast with lithium might cause additive effects and side effects.
Some brewer's yeast products contains lithium (37179).
|
Theoretically, taking brewer's yeast with MAOIs might increase the risk of hypertension.
Brewer's yeast contains tyramine. Taking brewer's yeast with MAOIs might increase the risk for hypertensive crisis (2).
|
Theoretically, chromium may have additive effects with antidiabetic agents and increase the risk of hypoglycemia.
|
Theoretically, aspirin might increase chromium absorption.
Animal research suggests that aspirin may increase chromium absorption and chromium levels in the blood (21055).
|
Theoretically, concomitant use of chromium and insulin might increase the risk of hypoglycemia.
|
Chromium might bind levothyroxine in the intestinal tract and decrease levothyroxine absorption.
Clinical research in healthy volunteers shows that taking chromium picolinate 1000 mcg with levothyroxine 1 mg decreases serum levels of levothyroxine by 17% when compared to taking levothyroxine alone (16012). Advise patients to take levothyroxine at least 30 minutes before or 3-4 hours after taking chromium.
|
NSAIDs might increase chromium levels in the body.
Drugs that are prostaglandin inhibitors, such as NSAIDs, seem to increase chromium absorption and retention (7135).
|
Theoretically, inhaling eucalyptol may reduce the effectiveness of amphetamines.
Animal research suggests that inhaling eucalyptol may reduce the levels of amphetamines in the blood (48987).
|
Theoretically, eucalyptus leaf might increase the risk of hypoglycemia.
Animal research suggests that eucalyptus leaf might have hypoglycemic activity, and might have additive effects when used with antidiabetes drugs (12871).
|
Theoretically, eucalyptus might increase the levels of CYP1A2 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP1A2, although this has not been reported in humans (12479).
|
Theoretically, eucalyptus might increase the levels of CYP2C19 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP2C19, although this has not been reported in humans (12479).
|
Theoretically, eucalyptus might increase the levels of CYP2C9 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP2C9, although this has not been reported in humans (12479).
|
Theoretically, eucalyptus might increase the levels of CYP3A4 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP3A4, although this has not been reported in humans (12479).
|
Theoretically, inhaling eucalyptol might reduce the effectiveness of pentobarbital.
Animal research suggests that inhaling eucalyptol reduces the level of pentobarbital that reaches the brain (48987).
|
Theoretically, taking gymnema with antidiabetes drugs might increase the risk of hypoglycemia.
Gymnema reduces blood glucose levels in some human and animal research. In human studies, it has been shown to enhance the blood glucose lowering effects of hypoglycemic drugs (45,46,92119,92121,92123). However, other research in adults with prediabetes or metabolic syndrome suggests that gymnema does not reduce fasting levels of blood glucose (96235,105346). Until more is known, monitor blood glucose levels closely.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP1A2.
Animal and in vitro research shows that gymnema can inhibit the CYP1A2 enzyme (96236,96237,96238). In one animal study, oral administration of gymnema for 7 days increased the plasma concentrations of phenacetin, a CYP1A2 substrate, by about 1.4-fold and reduced the clearance of phenacetin by about 29% (96237).
|
Theoretically, gymnema might increase or decrease levels of drugs metabolized by CYP2C9.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP3A4.
One in vitro study using rat liver microsomes shows that gymnema can modestly inhibit the CYP3A4 enzyme (96238). However, other in vitro research using human liver microsomes shows that gymnema does not affect CYP3A4 activity (96236). Animal research also shows that gymnema does not alter the function of CYP3A4. In one study in rats, oral administration of gymnema for 7 days did not alter the clearance of amlodipine, a CYP3A4 substrate (96237).
|
Theoretically, taking gymnema with phenacetin might increase the levels of phenacetin.
|
Theoretically, taking gymnema with tolbutamide might the decrease levels of tolbutamide.
Animal research shows that gymnema, administered orally for 7 days, increases the clearance of tolbutamide by 2.4-fold when compared to control (96237).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
|
Gabapentin absorption can be decreased by magnesium.
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, the risk for manganese toxicity might increase when taken with antipsychotic drugs.
Hallucinations and behavioral changes have been reported in a patient with liver disease who was taking haloperidol and manganese. Researchers speculate that taking manganese along with haloperidol, phenothiazine-derivatives, or other antipsychotic medications might increase the risk of manganese toxicity in some patients (61493).
|
Theoretically, manganese might reduce the absorption of quinolone antibiotics.
Manganese is a multivalent cation. Interactions resulting in reduced quinolone absorption have been reported between quinolones and other multivalent cations, such as calcium and iron (488).
|
Theoretically, manganese might reduce the absorption of tetracycline antibiotics.
Manganese is a multivalent cation. Interactions resulting in reduced tetracycline absorption have been reported between tetracyclines and other multivalent cations, such as calcium and iron (488).
|
Theoretically, niacinamide may have additive effects when used with anticoagulant or antiplatelet drugs, especially in patients on hemodialysis.
|
Niacinamide might increase the levels and adverse effects of carbamazepine.
Plasma levels of carbamazepine were increased in two children given high-dose niacinamide, 60-80 mg/kg/day. This might be due to inhibition of the cytochrome P450 enzymes involved in carbamazepine metabolism (14506). There is not enough data to determine the clinical significance of this interaction.
|
Niacinamide might increase the levels and adverse effects of primidone.
Case reports in children suggest niacinamide 60-100 mg/kg/day reduces hepatic metabolism of primidone to phenobarbital, and reduces the overall clearance rate of primidone (14506); however, there is not enough data to determine the clinical significance of this potential interaction.
|
Resveratrol may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP1A1.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP1A2.
In vitro research shows that resveratrol can inhibit CYP1A2 enzymes (21733). However, this interaction has not been reported in humans.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP1B1.
In vitro research shows that resveratrol can inhibit CYP1B1 enzymes (70834). However, this interaction has not been reported in humans.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP2C19.
In vitro research shows that resveratrol can inhibit CYP2C19 enzymes (70896). However, this interaction has not been reported in humans.
|
Resveratrol might increase levels of drugs metabolized by CYP2E1.
In vitro research suggests that resveratrol inhibits CYP2E1 isoenzyme (7864,70896). Also, a pharmacokinetic study shows that taking resveratrol 500 mg daily for 10 days prior to taking a single dose of chlorzoxazone 250 mg increases the maximum concentration of chlorzoxazone by about 54%, the area under the curve of chlorzoxazone by about 72%, and the half-life of chlorzoxazone by about 35% (95824). Chlorzoxazone is used as a probe drug for CYP2E1.
|
Theoretically, resveratrol might increase levels of drugs metabolized by CYP3A4.
|
Selenium may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Clinical research suggests that taking selenium 10 mcg/kg/day can increase bleeding times by increasing prostacyclin production, which inhibits platelet activity (14540). Other clinical research suggests that taking selenium 75 mcg daily, in combination with ascorbic acid 600 mg, alpha-tocopherol 300 mg, and beta-carotene 27 mg, reduces platelet aggregation (74406).
|
Theoretically, selenium might prolong the sedating effects of barbiturates.
|
Contraceptive drugs might increase levels of selenium, although the clinical significance of this effect is unclear.
Some research suggests that oral contraceptives increase serum selenium levels in women taking oral contraceptives; however, other research shows no change in selenium levels (14544,14545,14546,101343). It is suggested that an increase could be due to increased carrier proteins, indicating a redistribution of selenium rather than a change in total body selenium (14545).
|
Gold salts might interfere with selenium activity in tissues.
|
Theoretically, selenium supplementation may reduce the effectiveness of immunosuppressant therapy.
|
Selenium might reduce the beneficial effects of niacin on high-density lipoprotein (HDL) levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as selenium, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, selenium might interfere with warfarin activity.
Animal research suggests that selenium can increase warfarin activity. Selenium might interact with warfarin by displacing it from albumin binding sites, reducing its metabolism in the liver, or by decreasing production of vitamin K-dependent clotting factors (14541). Selenium can also prolong bleeding times in humans by increasing prostacyclin production, which inhibits platelet activity (14540).
|
Trimethoprim might increase blood levels of thiamine.
In vitro, animal, and clinical research suggest that trimethoprim inhibits intestinal thiamine transporter ThTR-2, hepatic transporter OCT1, and renal transporters OCT2, MATE1, and MATE2, resulting in paradoxically increased thiamine plasma concentrations (111678).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of alkylating agents.
There's concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
Concomitant use of vitamin E and anticoagulant or antiplatelet agents might increase the risk of bleeding.
Vitamin E seems to inhibit of platelet aggregation and antagonize the effects of vitamin K-dependent clotting factors (4733,4844,11580,11582,11583,11584,11586,112162). These effects appear to be dose-dependent, and are probably only likely to be clinically significant with doses of at least 800 units daily (11582,11585). Mixed tocopherols, such as those found in food, might have a greater antiplatelet effect than alpha-tocopherol (10364). RRR alpha-tocopherol (natural vitamin E) 1000 IU daily antagonizes vitamin K-dependent clotting factors (11999). Advise patients to avoid high doses of vitamin E, especially in people with low vitamin K intake or other risk factors for bleeding.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of antitumor antibiotics.
There's concern that antioxidants could reduce the activity of antitumor antibiotic drugs such as doxorubicin, which generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
A specific form of vitamin E might increase absorption and levels of cyclosporine.
There is some evidence that one specific formulation of vitamin E (D-alpha-tocopheryl-polyethylene glycol-1000 succinate, TPGS, tocophersolan, Liqui-E) might increase absorption of cyclosporine. This vitamin E formulation forms micelles which seems to increase absorption of cyclosporine by 40% to 72% in some patients (624,625,10368). However, this interaction is unlikely to occur with the usual forms of vitamin E.
|
Theoretically, vitamin E might induce metabolism of CYP3A4, possibly reducing the levels CYP3A4 substrates.
Vitamin E appears to bind with the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (13499,13500). Although the clinical significance of this is not known, use caution when considering concomitant use of vitamin E and other drugs affected by these enzymes.
|
Vitamin E might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises high-density lipoprotein (HDL) cholesterol levels in people with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% (7388,11537). Vitamin E alone combined with a statin does not seem to decrease HDL levels (11286,11287). It is not known whether the adverse effect on HDL is due to one of the other antioxidants or to the combination. It also is not known whether it will occur in other patient populations.
|
Taking selumetinib with vitamin E can result in a total daily dose of vitamin E that exceeds safe limits and therefore might increase the risk of bleeding.
Selumetinib contains 48-54 IU vitamin E per capsule (102971). The increased risk of bleeding with vitamin E appears to be dose-dependent (11582,11585,34577). Be cautious when using selumetinib in combination with supplemental vitamin E, especially in patients at higher risk of bleed, such as those with chronic conditions and those taking antiplatelet drugs (102971).
|
Using vitamin E with warfarin might increase the risk of bleeding.
Due to interference with production of vitamin K-dependent clotting factors, use of more than 400 IU of vitamin E daily with warfarin might increase prothrombin time (PT), INR, and the risk of bleeding, (91,92,93). At a dose of 1000 IU per day, vitamin E can antagonize vitamin K-dependent clotting factors even in people not taking warfarin (11999). Limited clinical evidence suggests that doses up to 1200 IU daily may be used safely by patients taking warfarin, but this may not be applicable in all patient populations (90).
|
Below is general information about the adverse effects of the known ingredients contained in the product Glucose Optimizer. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Alpha-lipoic acid appears to be generally well tolerated when used orally, intravenously, or topically.
Most Common Adverse Effects:
Orally: Headache, heartburn, nausea, and vomiting.
Topically: Irritation and rash.
Intravenously: Nausea and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about insulin autoimmune syndrome (IAS).
Cardiovascular ...Orally, hypotension has been reported rarely in a clinical trial (104650).
Dermatologic ...Orally, skin rash and itching have been reported after use of alpha-lipoic acid (16391,20490,21674,96233,104650). Topically, alpha-lipoic acid can cause local irritation, including burning, stinging, mild rash, or contact dermatitis (12021,30836,111701). In one case, an 86-year-old female developed allergic contact dermatitis with severe itching and oozing after applying alpha-lipoic acid 5% cream to her lower extremities. The patient had a positive skin patch test for alpha-lipoic acid, confirming the causative agent (111701). In another case, a 47-year-old female developed contact dermatitis characterized by a pruritic rash and labial adhesions hours after applying a 5% vulvar serum containing lipoic acid 0.9 grams, vitamin E, vitamin C, hyaluronic acid, and retinol palmitate to the vulva to treat vulvar lichen sclerosis. Testing confirmed that the causative agent was alpha-lipoic acid (111704). Intravenously, local allergic reactions have occurred at the injection site (1547).
Endocrine ...Orally, at least 50 published cases of insulin autoimmune syndrome (IAS) thought to be associated with use of alpha-lipoic acid have been reported (16392,104656,104657,104658,104659,107893,112941). Most reported cases have been associated with alpha-lipoic acid supplements or enriched foods; IAS has not been reported with intake of alpha-lipoic acid in food. IAS has been linked to compounds, such as alpha-lipoic acid, that contain sulfhydryl groups, but it is unclear if taking alpha-lipoic acid with other drugs known to trigger IAS increases the risk (107893,112941). IAS is characterized by very high serum insulin levels and high titers of autoantibodies against endogenous insulin. Sulfhydryl groups interact with disulfide bonds of insulin, increasing its immunogenicity (112941). Symptoms include severe spontaneous hypoglycemic episodes, as well as hunger and neuroglycopenic symptoms such as blurred vision, weakness, confusion, dizziness, sweating, and palpitations (104656,104657,107893,112941). Time to onset of IAS ranges from 1 week to 4 months (107893). Most cases of IAS have been reported in Japan and have occurred in individuals with the human leucocyte antigen (HLA)-DRB1*04:06 allele (16392,104656,107893). For patients of European decent, cases of IAS have mainly occurred in individuals with the HLA-DRB1*04:03 allele (104656,104658,104659,107893). This suggests that either of these alleles might produce a genetic predisposition to alpha-lipoic acid-associated IAS. Reported doses of alpha-lipoic acid have ranged from 200-800 mg daily, most commonly 600 mg daily (104656,104658,104659,107893). IAS-related hypoglycemic episodes have been treated with oral or intravenous glucose or sucrose, as well as prednisone. Episodes decline following discontinuation of alpha-lipoic acid, and insulin values normalize within 3-9 months (104656,104658,104659,107893).
Gastrointestinal ...Orally, heartburn, nausea, and vomiting have been reported after use of alpha-lipoic acid (3557,12106,16391,20475,30844,96225,101868,103327,103328,103333)(103335,104650,104654,104655). Higher doses (1200-1800 mg daily) seem to cause more severe effects than lower doses (600 mg daily) (3557,20475,30844,96225). Alpha-lipoic acid may also cause a burning sensation from the throat to the stomach, abdominal discomfort, or bitter taste when used orally (20478,20490,21664,96225). Intravenously, alpha-lipoic acid can cause gastrointestinal upset, including nausea and vomiting. Adverse effects are more common in patients receiving higher intravenous doses (3557) and may be more common in the elderly (96225).
Genitourinary ...Orally, alpha-lipoic acid may cause urinary disorders (20479). Oral alpha-lipoic acid has also been associated with a change in urine odor (96225,103327).
Neurologic/CNS
...Orally, alpha-lipoic acid may cause headache (21664,103328,104655) or dizziness (104650).
Intravenously, paresthesias have been reported to worsen temporarily at the beginning of therapy. Also, intravenous alpha-lipoic acid can cause headache. Adverse effects are more common in patients receiving higher intravenous doses (3557).
General
...Orally, banaba extract appears to be well tolerated.
Most Common Adverse Effects:
Orally: Diaphoresis, dizziness, headache, palpitations, stomach upset, tremor, and weakness have been reported with a specific product containing extracts of banaba leaf and Padang cassia (Inlacin, Dexa Medica); however, it is unclear if these adverse effects were caused by banaba extract, Padang cassia, or the combination.
Cardiovascular ...Orally, palpitations have been reported with a specific product containing extracts of banaba leaf and Padang cassia (Inlacin, Dexa Medica); however, it is unclear if this adverse effect was caused by banaba extract, Padang cassia, or the combination (92848).
Gastrointestinal ...Orally, stomach upset has been reported with a specific product containing extracts of banaba leaf and Padang cassia (Inlacin, Dexa Medica); however, it is unclear if this adverse effect was caused by banaba extract, Padang cassia, or the combination (92849).
Neurologic/CNS ...Orally, dizziness, headache, tremor, and weakness have been reported with a specific product containing extracts of banaba leaf and Padang cassia (Inlacin, Dexa Medica); however, it is unclear if these adverse effects were caused by banaba extract, Padang cassia, or the combination (92848,92849).
Other ...Orally, diaphoresis has been reported with a specific product containing extracts of banaba leaf and Padang cassia (Inlacin, Dexa Medica); however, it is unclear if this adverse effect was caused by banaba extract, Padang cassia, or the combination (92849).
General
...Orally and topically, biotin is generally well tolerated.
Most Common Adverse Effects: None.
Gastrointestinal ...Orally, high-dose biotin has been rarely associated with mild diarrhea. Transient mild diarrhea was reported by 2 patients taking biotin 300 mg daily (95662).
Pulmonary/Respiratory ...In one case report in France, a 76-year-old female frequent traveler developed eosinophilic pleuropericarditis after taking biotin 10 mg and pantothenic acid 300 mg daily for 2 months. She had also been taking trimetazidine for 6 years (3914). Whether eosinophilia in this case was related to biotin, pantothenic acid, other substances, or patient-specific conditions is unknown. There have been no other similar reports.
General
...Orally, bitter melon is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, constipation, diarrhea, dizziness, fatigue, flatulence, headache, heartburn, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Hypoglycemic coma and seizures (in children).
Dermatologic ...In one clinical study, two out of 31 patients taking bitter melon 4 grams daily experienced skin rash. Reports of skin rashes did not occur for patients taking bitter melon 2 grams daily (92126).
Endocrine ...Two cases of hypoglycemic coma have occurred in children after administration of a bitter melon tea (15568).
Gastrointestinal ...The most common adverse effects associated with bitter melon in clinical studies are gastrointestinal, such as heartburn, anorexia, nausea, vomiting, diarrhea, constipation, flatulence, and abdominal discomfort (92126,100632,100633,106408). In one study, these events occurred in about 3% to 16% of patients taking bitter melon (92126).
Neurologic/CNS ...Headaches, dizziness, and fatigue have been reported after the ingestion of bitter melon (15568,92126,100633,112372). In one clinical study, about 5% of patients taking bitter melon 2-4 grams daily reported dizziness (92126). Two cases of seizures have occurred in children after administration of a bitter melon tea (15568).
Renal ...In one case report, a 60-year-old female was diagnosed with acute interstitial nephritis after a gradual decline in renal function over 9 months. The patient later admitted to taking bitter melon extract 600 mg daily for 3 months followed by 1200 mg daily for 4 months for diabetes. Upon discontinuation of bitter melon and treatment with prednisolone, serum creatinine levels returned to baseline within 3 months (109582).
General
...Orally, brewer's yeast seems to be well tolerated in most patients when used short-term.
Most Common Adverse Effects:
Orally: Flatulence, migraine.
Serious Adverse Effects (Rare):
Orally: There is concern that brewer's yeast may cause fungemia in some people. It may also cause anaphylaxis in sensitive individuals.
Gastrointestinal ...Orally, brewer's yeast can cause intestinal discomfort and flatulence in hypersensitive individuals (2). Anal irritation and abdominal pain have been reported rarely (105170).
Immunologic ...Allergic reactions to brewer's yeast can occur in hypersensitive individuals. Symptoms include itching, urticaria, local or general exanthemas, and Quincke's edema (2). Rarely, anaphylaxis may occur. In one case, a 33-year-old male experienced dyspnea, chest tightness, and throat tightness shortly after ingesting a few sips of craft beer brewed using brewer's yeast. The patient took diphenhydramine, and symptoms improved prior to his arrival in the emergency department. While the patient had no history of hypersensitivity to other beers from the same brewery, a positive skin test and oral challenge suggested that he was sensitive to the specific strain of brewer's yeast uniquely used only in the offending beer (111107).
Neurologic/CNS ...Orally, brewer's yeast can cause migraine-like headaches in sensitive individuals (2).
General
...Orally, chromium is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal irritation, headaches, insomnia, irritability, mood changes.
Serious Adverse Effects (Rare):
Orally: Rare cases of kidney and liver damage, rhabdomyolysis, and thrombocytopenia have been reported.
Dermatologic
...Orally, chromium-containing supplements may cause acute generalized exanthematous pustulosis (42561), skin rashes (42679), and urticaria (17224).
Also, chromium picolinate or chromium chloride may cause systemic contact dermatitis when taken orally, especially in patients with contact allergy to chromium (6624,90058). In one clinical study, a patient taking chromium nicotinate 50 mcg daily reported itchy palms that improved after the intervention was discontinued. It is unclear of this effect was due to the chromium or another factor (95096).
Topically, hexavalent chromium, which can be present in some cement, leather products, or contaminated soil, may cause allergic contact dermatitis (42645,42789,90060,90064,110606).
A case of lichen planus has been reported for a patient following long-term occupational exposure to chromium (42688).
Endocrine ...Orally, cases of hypoglycemia have been reported for patients taking chromium picolinate 200-1000 mcg daily alone or 200-300 mcg two or three times weekly in combination with insulin (42672,42783). Chromium picolinate has also been associated with weight gain in young females who do not exercise and in those following a weight-lifting program (1938).
Gastrointestinal
...Orally, chromium in the form of chromium picolinate, chromium polynicotinate, chromium-containing brewer's yeast, or chromium-containing milk powder may cause nausea, vomiting, diarrhea, decreased appetite, constipation, flatulence, or gastrointestinal upset (14325,42594,42607,42622,42643,42679).
Long-term exposure to heavy metals, including chromium, has been associated with increased risk of gallbladder disease and cancer (42682,42704).
Genitourinary ...Orally, chromium polynicotinate has been associated with disrupted menstrual cycles in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Hematologic ...Anemia, hemolysis, and thrombocytopenia were reported in a 33 year-old female taking chromium picolinate 1200-2400 mcg daily for 4-5 months (554). The patient received supportive care, blood product transfusions, and hemodialysis and was stabilized and discharged a few days later. Lab values were normal at a one-year follow-up.
Hepatic ...Liver damage has been reported for a 33-year-old female taking chromium picolinate 1200 mcg daily for 4-5 months (554). Also, acute hepatitis has been reported in a patient taking chromium polynicotinate 200 mcg daily for 5 months (9141). Symptoms resolved when the product was discontinued. Two cases of hepatotoxicity have been reported in patients who took a specific combination product (Hydroxycut), which also contained chromium polynicotinate in addition to several herbs (13037).
Musculoskeletal ...Acute rhabdomyolysis has been reported for a previously healthy 24-year-old female who ingested chromium picolinate 1200 mcg over a 48-hour time period (42786). Also, chromium polynicotinate has been associated with leg pain and paresthesia in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Neurologic/CNS ...Orally, chromium picolinate may cause headache, paresthesia, insomnia, dizziness, and vertigo (6860,10309,14325,42594). Vague cognitive symptoms, slowed thought processes, and difficulty driving occurred on three separate occasions in a healthy 35-year-old male after oral intake of chromium picolinate 200-400 mcg (42751). Transient increases in dreaming have been reported in three patients with dysthymia treated with chromium picolinate in combination with sertraline (2659). A specific combination product (Hydroxycut) containing chromium, caffeine, and ephedra has been associated with seizures (10307). But the most likely causative agent in this case is ephedra.
Psychiatric ...Orally, chromium picolinate has been associated with irritability and mood changes in patients taking the supplement to lose weight, while chromium polynicotinate has been associated with agitation and mood changes in patients taking the supplement to prevent weight gain during smoking cessation (6860,42643).
Renal
...Orally, chromium picolinate has been associated with at least one report of chronic interstitial nephritis and two reports of acute tubular necrosis (554,1951,14312).
Laboratory evidence suggests that chromium does not cause kidney tissue damage even after long-term, high-dose exposure (7135); however, patient- or product-specific factors could potentially increase the risk of chromium-related kidney damage. More evidence is needed to determine what role, if any, chromium has in potentially causing kidney damage.
Intravenously, chromium is associated with decreased glomerular filtration rate (GFR) in children who receive long-term chromium-containing total parenteral nutrition - TPN (11787).
Topically, burns caused by chromic acid, a hexavalent form of chromium, have been associated with acute chromium poisoning with acute renal failure (42699). Early excision of affected skin and dialysis are performed to prevent systemic toxicity.
Other ...Another form of chromium, called hexavalent chromium, is unsafe. This type of chromium is a by-product of some manufacturing processes. Chronic exposure can cause liver, kidney, or cardiac failure, pulmonary complications, anemia, and hemolysis (9141,11786,42572,42573,42699). Occupational inhalation of hexavalent chromium can cause ulceration of the nasal mucosa and perforation of the nasal septum, and has been associated with pneumoconiosis, allergic asthma, cough, shortness of breath, wheezing, and increased susceptibility to respiratory tract cancer and even stomach and germ cell cancers (42572,42573,42601,42610,42636,42667,42648,42601,42788,90056,90066). Although rare, cases of interstitial pneumonia associated with chromium inhalation have been reported. Symptoms resolved with corticosteroid treatment (42614).
General
...Orally, diluted eucalyptus oil is generally well tolerated, but the undiluted oil can cause toxicity.
Most Common Adverse Effects:
Orally: Diarrhea, nausea, vomiting.
Topically: Burning, itching, redness, stinging.
Serious Adverse Effects (Rare):
Orally: Signs of toxicity can occur with the undiluted oil at doses as low as 1 mL and include central nervous system depression, shallow respiration, rapid pulse, apnea, coma, and death.
Topically: Prolonged exposure or large amounts of eucalyptus oil can cause agitation, ataxia, drowsiness, muscle weakness, seizures, and slurred speech. The risk of toxicity may be greater in children.
Inhalation (as aromatherapy): Seizures.
Cardiovascular ...Orally, one case of premature ventricular contractions has been reported in a previously healthy 29-year-old male who ingested approximately one ounce of eucalyptus oil (48983).
Dermatologic ...Topically, eucalyptus pollen, leaves, oil, and the constituent eucalyptol can cause contact dermatitis in sensitive people (13303,48931,92856,92858,92859,98497). In some cases, symptoms respond to treatment with topical corticosteroids and tacrolimus (92856). In one case report, transient local redness, burning, and irritation was reported in a 4-year-old child who was bathed in water containing eucalyptus oil. The symptoms resolved within one hour of rinsing the skin with clear water (48983). In a clinical study, treatment with a combination of eucalyptus oil and lemon tea tree oil caused burning, redness, itching, or stinging in up to 20% of the patients. Stinging usually resolved within 10 minutes of application and redness within 30 minutes (19188,98492).
Gastrointestinal ...Orally, eucalyptus oil can cause nausea, vomiting, and diarrhea (48983,48993,48995). Abdominal pain has been reported in a trial of the eucalyptus constituent eucalyptol for inflammatory bowel disease (IBD) (48936).
Immunologic
...A case of IgE-mediated exacerbation of asthma and rhinitis symptoms has been reported in a patient who consumed eucalyptus.
Similar worsening of symptoms occurred when the patient inhaled eucalyptus pollen (48957).
Occupational exposure to eucalyptus may cause allergic dermatitis (98497).
Neurologic/CNS
...Orally, eucalyptus oil can cause central nervous system depression, coma, and status epilepticus (12867,48946,48983).
Topically, orally, and by inhalation, eucalyptus oil has been associated with seizures. A systematic review describes the characteristics of 49 children and 61 adults with seizures associated with various routes of administration. Patients with no seizure history were classified as a eucalyptus oil-induced seizure (EOIS), while patients with a history of seizure or susceptibility to seizure were defined as a eucalyptus oil-provoked seizure (EOPS). In EOIS cases, topical use was reported in 74%, inhalation in 22.5%, and ingestion in 3.5%; for EOPS cases, topical use was reported in 79%, inhalation in 16%, and ingestion in 5%. Generalized tonic-clonic seizures are the most prominent type of seizure in EOIS cases (96%). Among EOPS patients, 37% had focal onset motor seizures with impaired awareness, 24% had focal onset aware motor seizures, 13% had focal to bilateral tonic-clonic seizures, and 26% had generalized onset tonic-clonic seizures (107494). One prospective observational study that was included in this systematic review provided additional details on eucalyptus-induced seizures. This study included 18 reports of EOIS and 28 reports of EOPS in adults and children after topical or inhaled use of eucalyptus oil, either alone or in combination with camphor. The time to seizure onset was 0.5-48 hours after topical application, 2-30 minutes after inhalation, and 0.5-6 hours after ingestion. (105028).
One prospective observational study and one case series have described 20 case reports of seizures occurring in children after ingestion of eucalyptus oil. Most of these seizures are generalized tonic-clonic in nature, occur 15-30 minutes after exposure, and do not reoccur following the discontinuation of eucalyptus oil. Seizures have been reported with both overdoses and therapeutic doses (107493,107495) and include cases of both EOIS and EOPS (107495). Additionally, children appear more likely to require intensive care and mechanical ventilation when compared with adult cases (107494).
A case of fever and headache has been reported in a patient who routinely applied a teaspoon of gel containing eucalyptus extract in his throat or nose to treat sore throat or rhinitis (48946).
General ...Orally, gymnema seems to be well tolerated.
Hepatic ...A case of drug-induced hepatitis characterized by weakness, fatigue, jaundice, and elevated liver enzymes, has been reported for a patient who consumed gymnema tea three times daily for 10 days. The patient was administered prednisone 60 mg once daily and was eventually tapered off prednisone and discharged. Laboratory values normalized after 6 months (95005). A case of hepatitis-associated aplastic anemia characterized by jaundice, elevated liver function tests, and pancytopenia has been reported for a patient who consumed gymnema 2 grams twice daily for at least a month. Treatment with ursodeoxycholic acid for 8 weeks led to resolution of cholestatic hepatitis; however, the pancytopenia was not responsive to treatment with immunosuppressive drugs and the patient died 5 months after presentation (110021). The exact reason for these adverse effects is not clear; they may have been idiosyncratic.
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally and parenterally, manganese is generally well tolerated when used in appropriate doses.
High doses might be unsafe.
Serious Adverse Effects (Rare):
All routes of administration: Neurotoxicity, including Parkinson-like extrapyramidal symptoms, when used in high doses.
Cardiovascular ...Chronic occupational exposure to manganese dust or fumes can cause orthostatic hypotension, and heart rate and rhythm disturbances (61363).
Endocrine ...Chronic occupational exposure to manganese dust or fumes can cause elevations in thyrotropin-releasing hormone (TRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels (61378).
Hepatic ...Manganese intoxication may cause cirrhosis and hepatic steatosis. In one case, a 13-year-old female with manganese intoxication developed severe, life-threatening neurological symptoms, with liver biopsy indicating incomplete cirrhosis and microvesicular steatosis. Chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of manganese exposure was not identified, and it is not clear if the impaired liver function contributed to the manganese accumulation or if elevated manganese exposure led to the liver damage.
Musculoskeletal ...Chronic occupational exposure to manganese dust or fumes has been associated with lower bone quality in females, but not males, suggesting that prolonged manganese exposure might increase the risk of osteoporosis in females (102516). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower motor function scores (108537).
Neurologic/CNS
...Orally, there is concern that higher doses of manganese might increase the risk of neurotoxicity, including Parkinson-like extrapyramidal symptoms (7135,10665,10666).
One severe case of irreversible Parkinson disease possibly related to taking manganese 100 mg daily for 2-4 years has been reported (96418). In another case, a 13-year-old female with manganese intoxication (diagnosed from blood manganese levels and cranial MRI evidence) developed severe neurological symptoms including loss of consciousness, decorticate posture, clonus, increased reflexes in the extremities, isochoric pupils, and no painful stimulus response. Liver biopsy also showed incomplete cirrhosis and microvesicular steatosis. The patient was intubated, and chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of the child's manganese exposure was not identified (112137). Individuals with impaired manganese excretion can also experience these effects even with very low manganese intake. Manganese accumulation due to chronic liver disease seems to cause Parkinson-like extrapyramidal symptoms, encephalopathy, and psychosis (1992,7135). One review recommends stopping supplementation if aminotransferase or alkaline phosphatase levels rise beyond twice normal (99302).
Chronic occupational exposure to manganese dust or fumes can also cause extrapyramidal reactions (1990,7135). In 1837, Couper observed that exposure to manganese dust particles produces a neurological syndrome characterized by muscle weakness, tremor, bent posture, whispered speech, and excess salivation (61264). Additionally, observational research in children has found that elevated manganese levels detected in the hair and fingernails due to environmental exposure may be associated with impaired neurocognitive function or development (108535). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower cognitive function scores (108537).
Intravenously, manganese might increase the risk of neurotoxicity when administered at high doses or for an extended duration. Cases of Parkinson-like symptoms have been reported in patients receiving parenteral nutrition containing more than 60 mcg of manganese daily. Moderate MRI intensity uptake for manganese in the globus pallidus and basal ganglion areas of the brain has been shown in patients receiving parenteral manganese (96416,99302).
Psychiatric ...Chronic occupational exposure to manganese dust or fumes can cause mood disturbance and dementia (1990,7135). A case report describes a man who presented with confusion, psychosis, dystonic limb movements, and cognitive impairment after chronic industrial manganese exposure (99415). Symptoms of manganese toxicity from inhalational exposure develop slowly with initial fatigue and personality changes, progressing to hallucinations, delusions, hyperexcitability, Parkinson-like symptoms, dystonia, and dementia (99415). Additionally, observational research has found that chronic environmental exposure to manganese sources such as mining operations and various industrial processes may be associated with a greater risk for developing symptoms of depression (108536).
Pulmonary/Respiratory ...Chronic occupational exposure to manganese dust or fumes can cause acute chemical pneumonitis, pulmonary edema, or acute tracheobronchitis (61495).
General
...Orally, niacinamide is well tolerated in amounts typically found in food.
When used topically and orally in higher doses, niacinamide seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, drowsiness, itching, gastrointestinal disturbances, headache, and rash.
Topically: Burning sensation, itching, and mild dermatitis.
Dermatologic ...Orally, large doses of niacinamide are associated with occasional reports of rashes, itching, and acanthosis nigricans (4880,11695,11697,14504,107709), though a meta-analysis of 19 clinical studies suggests that dermatological adverse event rates are similar between niacinamide and control (110497). Topically, application of niacinamide in a cream has been reported to cause a burning sensation, itching and pruritus, crusting, and mild dermatitis (93357,93360,110501,110498).
Endocrine ...Orally, niacinamide in high doses, 50 mg/kg daily, has been associated with modestly higher insulin requirements in patients with type 1 diabetes, when compared with taking niacinamide 25 mg/kg daily. Theoretically, high-dose niacinamide might increase insulin resistance, although to a lesser extent than niacin (4881,14512).
Gastrointestinal ...Orally, large doses of niacinamide can cause gastrointestinal disturbances including nausea, vomiting, heartburn, anorexia, epigastric pain, flatulence, and diarrhea (6243,11694,11695,11696,11697,107709,110497,113682).
Hematologic ...Orally, niacinamide supplementation might increase the risk for thrombocytopenia in patients undergoing hemodialysis (98940,107709). A meta-analysis of small clinical studies shows that taking niacinamide during hemodialysis to reduce phosphate levels is associated with a 2.8-fold increased risk for thrombocytopenia when compared with placebo. In one of the included studies, platelet levels returned to normal within 20 days after niacinamide discontinuation (98940).
Hepatic ...Orally, older reports of elevated liver function tests with high doses of niacinamide (3 grams or more daily) have raised concerns about liver toxicity. However, newer studies have not reported this concern; it is possible that some of these cases were due to contamination with niacin (4880,11694,11695,14503).
Neurologic/CNS ...Orally, large doses of niacinamide can cause dizziness, drowsiness, and headaches (11694,11695,11696,11697,107709).
General
...Orally, pantothenic acid is generally well tolerated.
Topically and intramuscularly, dexpanthenol, a synthetic form of pantothenic acid, seems to be well tolerated.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, eczema, irritation, and itching related to dexpanthenol.
Cardiovascular ...There is one case of eosinophilic pleuropericardial effusion in a patient taking pantothenic acid 300 mg per day in combination with biotin 10 mg per day for 2 months (3914).
Dermatologic ...Topically, dexpanthenol has been associated with itching, burning, skin irritation, contact dermatitis, and eczema (67779,67781,67788,111258,111262). Three cases of allergic contact dermatitis have been reported (111260,111261).
Gastrointestinal ...Orally, pantothenic acid has been associated with diarrhea (67822,111258).
General
...In foods, resveratrol is well tolerated.
When used orally in higher doses, as well as topically or intranasally, resveratrol seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal discomfort, and loose stools.
Dermatologic
...Orally, there is one case of a pruritic skin rash that occurred in a clinical trial.
The rash resolved two weeks after stopping resveratrol (109163).
Topically, a case of allergic contact dermatitis has been reported after applying a facial cream (Resveratrol BE, Skinceuticals) containing aqueous resveratrol 1% in combination with Baikal skullcap root extract 0.5%. Patch testing identified a positive reaction to both ingredients (110024).
Gastrointestinal ...Orally, mild gastrointestinal discomfort with increased diarrhea or loose stools has been reported, especially when resveratrol is taken in doses of 2. 5-5 grams daily (71042,71052,91327,95830,109163,109164,109167).
Hematologic ...In one clinical study, a patient developed severe febrile leukopenia and thrombocytopenia after taking oral resveratrol 500 mg three times daily for 10 days. Upon re-exposure to resveratrol, febrile leukopenia recurred (109163).
Musculoskeletal ...Orally, resveratrol has been associated with muscle cramps in patients on peritoneal dialysis. The causality of this adverse effect has not been established (95830).
Neurologic/CNS ...Orally, resveratrol has been associated with headache, fatigue, and memory loss in patients on peritoneal dialysis. The causality of these adverse effects has not been established (95830).
General
...Orally, selenium is generally well-tolerated when used in doses that do not exceed the tolerable upper intake level (UL) of 400 mcg daily.
Intravenously, selenium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Gastric discomfort, headache, and rash. Excessive amounts can cause alopecia, dermatitis, fatigue, nail changes, nausea and vomiting, and weight loss.
Serious Adverse Effects (Rare):
Orally: Excessive ingestion has led to cases of multi-organ failure and death.
Dermatologic ...Excess selenium can produce selenosis in humans, affecting liver, skin, nails, and hair (74304,74326,74397,74495,90360,113660) as well as dermatitis (74304). Results from the Nutritional Prevention of Cancer Trial conducted among individuals at high risk of nonmelanoma skin cancer demonstrate that selenium supplementation is ineffective at preventing basal cell carcinoma and that it increases the risk of squamous cell carcinoma and total nonmelanoma skin cancer (10687). Mild skin rash has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Endocrine
...Multiple clinical studies have found an association between increased intake of selenium, either in the diet or as a supplement, and the risk for type 2 diabetes (97091,99661).
One meta-analysis shows that a selenium plasma level of 90 mcg/L or 140 mcg/L is associated with a 50% or 260% increased risk for developing type 2 diabetes, respectively, when compared with plasma levels below 90 mcg/L. Additionally, consuming selenium in amounts exceeding the recommended dietary allowance (RDA) is associated with an increased risk of developing diabetes when compared with consuming less than the RDA daily. Also, taking selenium 200 mcg daily as a supplement is associated with an 11% increased risk for diabetes when compared with a placebo supplement (99661).
Hypothyroidism, secondary to iodine deficiency, has been reported as a result of selenium intravenous administration (14563,14565). One large human clinical trial suggested a possible increased risk of type 2 diabetes mellitus in the selenium group (16707).
Gastrointestinal ...In human research, nausea, vomiting, and liver dysfunction has been reported as a result of high selenium exposure (74439,74376,113660). Mild gastric discomfort has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Genitourinary ...The effect of selenium supplementation on semen parameters is unclear. In human research, selenium supplementation may reduce sperm motility (9729); however, follow-up research reported no effect on sperm motility or any other semen quality parameter (74441).
Musculoskeletal ...Chronic selenium exposure of 30 mg daily for up to 24 weeks may cause arthralgia, myalgia, and muscle spasms (113660).
Neurologic/CNS ...Chronic exposure to organic and inorganic selenium may cause neurotoxicity, particularly motor neuron degeneration, leading to an increased risk of amyotrophic lateral sclerosis (ALS) (74304). Headache has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months and in patients taking sodium selenate 30 mg daily for up to 24 weeks (97943,113660).
General
...Orally and parenterally, thiamine is generally well tolerated.
Serious Adverse Effects (Rare):
Parenterally: Hypersensitivity reactions including angioedema and anaphylaxis.
Immunologic
...Orally, thiamine might rarely cause dermatitis and other allergic reactions.
Parenterally, thiamine can cause anaphylactoid and hypersensitivity reactions, but this is also rare (<0.1%). Reported symptoms and events include feelings of warmth, tingling, pruritus, urticaria, tightness of the throat, cyanosis, respiratory distress, gastrointestinal bleeding, pulmonary edema, angioedema, hypotension, and death (15,35585,105445).
In one case report, a 46-year-old female presented with systemic allergic dermatitis after applying a specific product (Inzitan, containing lidocaine, dexamethasone, cyanocobalamin and thiamine) topically by iontophoresis; the allergic reaction was attributed to thiamine (91170).
General
...Orally, intramuscularly, and topically, vitamin B12 is generally well-tolerated.
Most Common Adverse Effects:
Intramuscular: Injection site reactions.
Serious Adverse Effects (Rare):
Intramuscularly: Severe hypokalemia has been rarely linked with correction of megaloblastic anemia with vitamin B12.
Cardiovascular ...In human clinical research, an intravenous loading dose of folic acid, vitamin B6, and vitamin B12, followed by daily oral administration after coronary stenting, increased restenosis rates (12150). Hypertension following intravenous administration of hydroxocobalamin has been reported in human research (82870,82864).
Dermatologic
...Orally or intramuscularly, vitamin B12 can cause allergic reactions such as rash, pruritus, erythema, and urticaria.
Theoretically, allergic reactions might be caused by the cobalt within the vitamin B12 molecule (82864,90373,90381,103974). In one case report, oral methylcobalamin resulted in contact dermatitis in a 59-year-old Japanese female with a cobalt allergy (103974). In another case report, a 69-year-old female developed a symmetrical erythematous-squamous rash for 5 years after oral vitamin B12 supplementation for 10 years. A patch test confirmed that the systemic allergic dermatitis was due to vitamin B12 supplementation, which resolved 3 months after discontinuation (114578).
Vitamin B12 (intramuscular or oral) has also been associated with at least 19 cases of acneiform eruptions which resolved upon discontinuation of vitamin B12 (90365,90369,90388). High-dose vitamin B12 (20 mcg daily) and vitamin B6 (80 mg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may last up to four months after the supplement is stopped and can be treated with systemic corticosteroids and topical therapy (10998,82870,82871).
Gastrointestinal ...Intravenously, vitamin B12 (hydroxocobalamin) 2. 5-10 grams can cause nausea and dysphagia (82864).
Genitourinary ...Intravenously, vitamin B12 (hydroxocobalamin) 5-15 grams has been associated with chromaturia in clinical research (82870,82871,112282,112264).
Hematologic ...According to case report data, the correction of megaloblastic anemia with vitamin B12 may result in fatal hypokalemia (82914).
Musculoskeletal ...According to case report data, correction of megaloblastic anemia with vitamin B12 has precipitated gout in susceptible individuals (82879).
Neurologic/CNS ...Treatment with vitamin B12 has been rarely associated with involuntary movements in infants with vitamin B12 deficiency (90370,90385,90397). In some cases these adverse reactions were misdiagnosed as seizures or infantile tremor syndrome (90370,90385). These adverse reactions presented 2-5 days after treatment with vitamin B12 and resolved once vitamin B12 was discontinued (90370,90385,90397).
Oncologic ...Although some epidemiological research disagrees (9454), most research has found that elevated plasma levels of vitamin B12 are associated with an increased risk of various types of cancer, including lung and prostate cancers and solid tumors (50411,102383,107743). One study found, when compared with blood levels of vitamin B12 less than 1000 ng/mL, plasma vitamin B12 levels of at least 1000 ng/mL was strongly associated with the occurrence of solid cancer (107743). It is unclear if increased intake of vitamin B12, either through the diet or supplementation, directly affects the risk of cancer. It is possible that having cancer increases the risk of vitamin B12 elevation. However, one observational study has found that the highest quintile of dietary intake of vitamin B12 is associated with a 75% increased incidence of developing esophageal cancer when compared with the lowest quintile in never drinkers, but not drinkers (107147).
Renal ...There is a case report of oxalate nephropathy in a 54-year-old male which was determined to be related to the use of intravenous hydroxocobalamin as treatment for cyanide poisoning. Intermittent hemodialysis was started 5 days after admission, along with a low-oxalate diet, oral calcium acetate, and pyridoxine 5 mg/kg daily (107148). A review of the use of intravenous hydroxocobalamin for suspected cyanide poisoning in 21 intensive care units in France between 2011 and 2017 resulted in a 60% increased odds of acute kidney injury and a 77% increased odds of severe acute kidney injury in the first week. However, biopsies were not conducted and a direct link with use of hydroxocobalamin could not be made (107139).
Other ...Several studies have found that higher vitamin B12 levels may be associated with increased mortality or decreased survival rates in hospitalized elderly patients (82889,82812,82857,82895). Human research has also found a positive correlation between vitamin B12 status and all-cause mortality in Pima Indians with diabetes (82863).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Daily doses of 100 mg or less are unlikely to cause these problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).
General
...Orally and topically, vitamin E is generally well-tolerated.
Serious Adverse Effects (Rare):
Orally: Bleeding, hemorrhagic stroke, cardiovascular complications.
Inhaled: Vitamin E acetate is thought to be responsible for e-cigarette, or vaping, product-use associated lung injury (EVALI).
Cardiovascular
...Some evidence suggests that taking vitamin E supplements, especially greater than or equal to 400 IU taken by mouth daily for over one year, might also increase the risk of mortality in non-healthy patients (12212,13036,15305,16709,83339).
A population study shows that vitamin E use is associated with a significantly increased risk of mortality in people with a history of severe cardiovascular disease such as stroke or myocardial infarction (16709). In an analysis of clinical trials, patients who took either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) in doses of 400 IU/day or higher had an increased risk of mortality from all causes. The risk of mortality seems to increase when higher doses are used (12212). A large-scale study also suggests that patients with diabetes or cardiovascular disease who take RRR-alpha-tocopherol (natural vitamin E) 400 IU daily have an increased risk of heart failure and heart failure-related hospitalization (13036). However, in another large scale study, taking 600 IU vitamin E every other day for 10 years did not increase the risk of heart failure in healthy females over 45 years of age (90068). There is speculation that high-dose vitamin E might disrupt the normal antioxidant balance and result in pro-oxidant rather than antioxidant effects.
There is some evidence that vitamin E in combination with simvastatin (Zocor), niacin, selenium, vitamin C, and beta-carotene might lower high density lipoprotein-2 (HDL-2) by 15%. HDL-2 is considered to be the most cardioprotective component of HDL (7388). However, vitamin E and a statin alone don't seem to negatively affect HDL (11286,11287). In addition, vitamin E has been associated with increased triglycerides (85215). Although only certain isomers of vitamin E are included for determination of dietary requirements, all isomers are considered for determining safe intake levels. All the isomers are thought to potentially contribute to toxicity.
Dermatologic
...Topically, vitamin E has been associated with contact dermatitis, inflammatory reactions, and eczematous lesions (11998,85066,85285).
Dermatitis, often associated with moisturizers containing vitamin E, has a scattered generalized distribution, is more common on the face than the hands, and is more common in females with a history of atopic dermatitis. In a retrospective analysis of results of patch tests for DL-alpha-tocopherol sensitivity, 0.9% of patients had a definite positive reaction, while over 50% had a weakly positive, non-vesicular erythematous reaction (107869).
Orally, vitamin E has been associated with pruritus in one clinical trial (34596).
Subcutaneously, vitamin E has been associated with reports of lipogranuloma (85188,112331). In one case, subcutaneous injection of a specific supplement (1Super Extenze), containing mineral oil and tocopherol acetate, into the penile tissue resulted in penile disfigurement due to sclerosing lipogranuloma (85188). In another case, a 50-year-old Iranian female presented with lipogranuloma of the face, characterized by severe facial erythema, edema, and tenderness, 3 months after receiving subcutaneous injections of vitamin E to the cheeks for "facial rejuvenation." The patient had noticed initial symptoms within 3 days, and her symptoms progressively worsened over time (112331).
Gastrointestinal ...Orally, vitamin E supplementation has been associated with abdominal pain, nausea, diarrhea, or flu-like symptoms (85040,85323). Intravenously, large doses of vitamin E in premature infants are associated with an increased risk of necrotizing enterocolitis and sepsis (85083,85231).
Genitourinary ...There is contradictory evidence about the effect of vitamin E on prostate cancer risk. One large-scale population study shows that males who take a multivitamin more than 7 times per week and who also take a separate vitamin E supplement have a significantly increased risk of developing prostate cancer (15607). In a large-scale clinical trial (The SELECT trial) in males over the age of 50 years, taking all-rac-alpha-tocopherol (synthetic vitamin E) 400 IU daily increased the risk of developing prostate cancer by 17% when compared with placebo. However, the difference in prostate cancer risk between vitamin E and placebo became significant only 3 years after patients stopped taking supplementation and were followed in an unblinded fashion. Interestingly, patients taking vitamin E plus selenium did not have a significantly increased risk of prostate cancer (17688).
Hematologic ...High doses of vitamin E might increase the risk of bleeding due to antagonism of vitamin K-dependent clotting factors and platelet aggregation. Patients with vitamin K deficiencies or taking anticoagulant or antiplatelet drugs are at a greater risk for bleeding (4098,4844,11999,34596,34538,34626,34594,112162).
Neurologic/CNS ...There is concern that vitamin E might increase the risk of hemorrhagic stroke (16708,34594,34596,108641). In one clinical study, there was a higher incidence of hemorrhagic stroke in male smokers taking all-rac-alpha-tocopherol (synthetic vitamin E) for 5-8 years compared to those not taking vitamin E (3949). Other studies lasting from 1.4-4.5 years and using either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) showed no significantly increased risk for stroke (2307,3896,3936). A meta-analysis of studies shows that vitamin E in doses of 300-800 IU daily, including both natural and synthetic forms, does not significantly affect total stroke risk. However, it significantly increases the risk of hemorrhagic stroke by 22%. This means that there will be one additional hemorrhagic stroke for every 1250 patients taking vitamin E. In contrast to this finding, the analysis also found that vitamin E significantly reduces the risk of ischemic stroke by 10%. This means that one ischemic stroke will be prevented for every 476 patients taking vitamin E (14621). In patients with moderately severe Alzheimer disease, taking vitamin E 2000 IU for 2 years has been associated with a modest, but significant, increase in falls and episodes of syncope when compared to placebo (4635).
Pulmonary/Respiratory ...When inhaled, vitamin E acetate is thought to play a role in the development of e-cigarette, or vaping, product-use associated lung injury (EVALI). Although a causal link has not yet been determined, in two case series, vitamin E acetate has been found in most bronchoalveolar lavage samples taken from the primary site of lung injury in patients with EVALI, whereas no vitamin E was found in healthy control samples. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. EVALI has resulted in death in some patients (101062,102970).
Other ...In an analysis of 3 trials, taking vitamin E 400 IU with vitamin C 1000 mg daily for 14-22 weeks during gestation appears to increase the risk of gestational hypertension by 30% compared to placebo in patients at risk of pre-eclampsia. However, the risk of pre-eclampsia itself was not increased (83450).