Ingredients | Amount Per Serving |
---|---|
(Ca)
(Calcium Carbonate)
|
70 mg |
Extrim Block Blend
|
645 mg |
(Phaseolus vulgaris )
(bean)
(8:1)
|
|
(Gymnema sylvestre )
(leaves)
|
|
(Shellfish)
|
|
Extrim Boost Blend
|
230 mg |
(Rhamnus purshiana )
(bark)
|
|
Extrim Burn Blend
|
60 mg |
(Ilex paraguariensis )
(leaf)
|
|
(Garcinia cambogia )
(fruit)
|
|
(leaf)
|
Microcrystalline Cellulose, Croscarmellose Sodium, Vegetable Stearic Acid, Vegetable Magnesium Stearate, Silicon Dioxide (Alt. Name: SiO2), Sodium Carboxymethycellulose, Dextrin, Dextrose, Lecithin (Form: Soy), Sodium Citrate
Below is general information about the effectiveness of the known ingredients contained in the product Extrim Shape. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Extrim Shape. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Cascara sagrada seems to be safe when used for less than one week (272,25023,40087). Cascara sagrada was formerly approved by the US Food and Drug Administration (FDA) as a safe and effective over-the-counter (OTC) laxative, but this designation was removed in 2002 due to a lack of supporting evidence (8229).
POSSIBLY UNSAFE ...when used orally, long-term. Using cascara sagrada for more than 1-2 weeks can lead to dependence, electrolyte loss, and hypokalemia (272).
CHILDREN: POSSIBLY UNSAFE
when used orally in children.
Cascara sagrada should be used cautiously in children due to the risk of electrolyte loss and hypokalemia (272).
PREGNANCY:
Insufficient reliable information available; avoid using.
LACTATION: POSSIBLY UNSAFE
when used orally.
Cascara sagrada is excreted into breast milk and might cause diarrhea (272).
POSSIBLY SAFE. ..when used orally, short-term. Chitosan has been used with apparent safety in clinical studies at a dose of up to 1.35 grams daily for up to 3 months (1942,9609,9610,10022,10023,10024,10025,11307,13171,14314)(15126,92781,97708). ...when used topically, short-term (1944,1945,4269,4270,97712,106521).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
There is insufficient reliable information available about the safety of garcinia extract when used orally. However, there is some concern about liver toxicity. There are numerous case reports of elevated liver enzymes and symptoms of liver toxicity in patients who have taken garcinia alone or in combination with other ingredients for as little as one week. In at least two reports, hepatotoxicity occurred in patients who were taking garcinia alone. Most other reports occurred in patients taking multi-ingredient products (13037,53511,93380,93381,93384,93385,93392,93393,93394,96535)(102544,102545,111241).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when green tea is consumed as a beverage in moderate amounts (733,6031,9222,9223,9225,9226,9227,9228,14136,90156)(90159,90168,90174,90184,95696). Green tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 8 cups of green tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). ...when green tea extract cream or ointment is used topically and appropriately, short-term. A green tea extract 3% cream, applied twice daily, has been used with apparent safety for up to 8 weeks, and a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins has been safely used for up to 16 weeks (15067). The safety of treatment for longer durations or multiple treatment courses is not known.
POSSIBLY SAFE ...when green tea extract is used orally. Green tea extract containing 7% to 12% caffeine has been used safely for up to 2 years (8117,37725). Also decaffeinated green tea extract up to 1.3 grams daily enriched in EGCG has been used safely for up to 12 months (90158,97131). In addition, green tea extract has been safely used as part of an herbal mixture also containing garcinia, coffee, and banaba extracts for 12 weeks (90137). ...when used topically and appropriately as a cream or mouthwash (6065,11310,90141,90150,90151).
POSSIBLY UNSAFE ...when consumed as a beverage in large quantities. Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 12 cups of green tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. There is also some speculation that green tea products containing higher amounts of the catechin epigallocatechin gallate (EGCG) might have increased risk of adverse events. Some research has found that taking green tea products containing EGCG levels greater than 200 mg is associated with increased risk of mild adverse effects such as constipation, increased blood pressure, and rash (90161). Other research has found that doses of EGCG equal to or above 800 mg daily may be associated with increased risk of liver injury in humans (95440,95696,97131).
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, and prior caffeine use (11832).
CHILDREN: POSSIBLY SAFE
when used orally by children and adolescents in amounts commonly found in foods and beverages (4912,11833).
Intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). ...when used for gargling three times daily for up to 90 days (90150).
There is insufficient reliable information available about the safety of green tea extract when used orally in children. However, taking green tea extract orally has been associated with potentially serious, albeit uncommon and unpredictable cases, of hepatotoxicity in adults. Therefore, some experts recommend that children under the age of 18 years of age do not use products containing green tea extract (94897).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, pregnant patients should closely monitor their intake to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,98806). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Based on animal models, green tea extract catechins are also transferred to the fetus, but in amounts 50-100 times less than maternal concentrations (15010). The potential impact of these catechins on the human fetus is not known, but animal models suggest that the catechins are not teratogenic (15011).
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts providing more than 300 mg caffeine daily.
Caffeine from green tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. High maternal doses of caffeine throughout pregnancy have also resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
There is also concern that consuming large amounts of green tea might have antifolate activity and potentially increase the risk of folic acid deficiency-related birth defects. Catechins in green tea inhibit the enzyme dihydrofolate reductase in vitro (15012). This enzyme is responsible for converting folic acid to its active form. Preliminary evidence suggests that increasing maternal green tea consumption is associated with increased risk of spina bifida (15068). Also, evidence from epidemiological research suggests that serum folate levels in pregnant patients with high green tea intake (57.3 mL per 1000 kcal) are decreased compared to participants who consume moderate or low amounts of green tea (90171). More evidence is needed to determine the safety of using green tea during pregnancy. For now, advise pregnant patients to avoid consuming large quantities of green tea.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, nursing parents should closely monitor caffeine intake. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of green tea might cause irritability and increased bowel activity in nursing infants (6026). There is insufficient reliable information available about the safety of green tea extracts when applied topically during breast-feeding.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Gum arabic has Generally Recognized As Safe (GRAS) status for use in foods in the US. It is also considered to be safe for use as a food additive by the European Food Safety Authority (4912,105040).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (8072). Up to 30 grams daily of powdered gum arabic has been used with apparent safety for 3 months (18237,99098,105040).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in foods (4912,105040).
POSSIBLY SAFE ...when used orally and appropriately. Gymnema leaf extract has been used safely in doses of 200 mg twice daily for up to 20 months or 300 mg twice daily for 12 weeks (45,46,42604,105346).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Most research has evaluated a specific Phaseolus vulgaris (white kidney bean) extract (Phase 2, Pharmachem Labs), which appears to be safe in doses of up to 3 grams daily for 2-3 months (12186,15518,26157,29926). Other Phaseolus vulgaris (white kidney bean) extracts also seem to be safe in doses of 0.9-2.4 grams daily when used for up to 3 months (10633,104875).
POSSIBLY UNSAFE ...when large amounts of fresh Phaseolus vulgaris husks are ingested. Raw Phaseolus vulgaris husks contain lectins that can cause gastrointestinal upset. Cooking destroys the lectins (18).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term (11866). Yerba mate has been safely used in doses of 3 grams daily for up to 12 weeks (92152,96469,96470).
POSSIBLY UNSAFE ...when yerba mate is used orally in large amounts or for prolonged periods of time. Drinking approximately 1-2 liters, or 4-8 cups, of yerba mate daily is associated with an increased risk of cancer, including esophageal, stomach, kidney, bladder, cervical, prostate, lung, renal cell, and possibly laryngeal and mouth cancer (1528,1529,1530,1531,11863,11864,92150). Yerba mate also contains caffeine. Acute use of high doses of caffeine (more than 400 mg per day), which is found in more than 8-10 cups of yerba mate, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Drinking yerba mate in amounts greater than 12-15 cups daily (about 600 mg caffeine) short-term or long-term can also cause caffeinism with symptoms of anxiety possibly progressing to delirium and agitation. Chronic use of caffeine, especially in large amounts, can sometimes produce tolerance, habituation, and psychological dependence (3719). Abrupt discontinuance of caffeine can cause physical withdrawal symptoms (11733). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as yerba mate, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
CHILDREN: POSSIBLY UNSAFE
when used orally.
Yerba mate is associated with an increased risk of cancer, including esophageal, kidney, bladder, cervical, prostate, lung, and possibly mouth and laryngeal cancer (1528,1529,1530,1531,11863,11864,92150).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Yerba mate is associated with an increased risk of cancer, including esophageal, kidney, bladder, cervical, prostate, lung, renal cell, and possibly mouth and laryngeal cancer (1528,1529,1530,1531,11863,11864,92150,86595,86614,86700,86701). However, teratogenic studies have not been performed. Yerba mate also contains caffeine. Caffeine crosses the placenta, producing fetal blood concentrations similar to parental levels. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume caffeine in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). It is generally recommended to avoid consuming more than 300 mg of caffeine daily, or around 6-7 cups of yerba mate daily, when pregnant (2708). High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891,86618). Caffeine in doses of greater than 300 mg daily has also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711), although one retrospective study found that consuming yerba mate tea during pregnancy was not associated with preterm or small for gestational age births (13113). However, this study did not consider the amount of yerba mate or caffeine consumed, only the frequency of consumption. Some research has found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846).
LACTATION: POSSIBLY UNSAFE
when used orally.
Yerba mate is associated with an increased risk of cancer, including esophageal, kidney, bladder, cervical, prostate, lung, renal cell, and possibly mouth and laryngeal cancer (1528,1529,1530,1531,11863,11864,92150). Whether carcinogenic constituents of yerba mate are transferred via breast milk is unknown. Yerba mate contains caffeine. Consumption of yerba mate might cause irritability and increased bowel activity in nursing infants (6026).
Below is general information about the interactions of the known ingredients contained in the product Extrim Shape. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, cascara sagrada might increase the risk of hypokalemia when taken with corticosteroids.
|
Theoretically, cascara sagrada might decrease the effects of CYP3A4 substrates.
In vitro research suggests that cascara sagrada can induce CYP3A4 enzymes, albeit to a much lower degree than rifampin, a known CYP3A4 inducer (110704).
|
Theoretically, cascara sagrada might cause hypokalemia, potentially increasing the risk of digoxin toxicity.
|
Theoretically, cascara sagrada might increase the risk of hypokalemia when taken with diuretic drugs.
|
Theoretically, cascara sagrada might have additive adverse effects when taken with stimulant laxatives.
Cascara sagrada has stimulant laxative effects and might compound fluid and electrolyte losses when taken with stimulant laxatives (19).
|
Theoretically, cascara sagrada might increase the risk of bleeding when taken with warfarin.
Cascara sagrada has stimulant laxative effects (19). In some people, cascara sagrada can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding.
|
Chitosan can reduce the absorption of acyclovir, potentially increasing the risk for treatment failure.
Clinical research in humans shows that taking chitosan along with acyclovir 200 mg reduces acyclovir absorption. Concomitant administration of chitosan 400 mg or 1000 mg reduced the acyclovir area under the curve (AUC) and peak plasma concentration by about 30% and 40%, respectively, compared with control. Concomitant administration with chitosan 1000 mg also increased time to peak concentration from 1 hour to 2 hours (92780). In vitro research suggests that the mechanism for reduced absorption is due to acyclovir entrapment in chitosan-mucus complexes, which reduces intestinal absorption (112352).
|
Theoretically, chitosan might increase the risk of bleeding when taken with warfarin.
In a case report, a patient taking warfarin had a significantly increased international normalized ratio (INR) after starting chitosan 1200 mg daily. The INR normalized after chitosan was discontinued and vitamin K was administered. The patient once again started taking chitosan and again had a significant increase in INR. The INR stabilized again once chitosan was discontinued (15909). Researchers theorize that this interaction might occur because chitosan decreases absorption of fat-soluble vitamins, including vitamin K, which could increase the anticoagulant effect of warfarin.
|
Theoretically, hydroxycitric acid (HCA), the main active ingredient in garcinia, might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
HCA inhibits platelet aggregation in vitro. The inhibitory effect seems to be greater in platelets extracted from diabetic subjects than non-diabetic subjects (26862).
|
Theoretically, hydroxycitric acid (HCA), the main active ingredient in garcinia, might have additive effects with antidiabetes drugs and increase the risk of hypoglycemia.
|
Theoretically, concomitant use with other potentially hepatotoxic drugs might increase the risk of developing liver damage.
There have been reports of acute hepatitis with elevated liver enzymes associated with garcinia, when taken alone or in combination with other ingredients (13037,53511,93380,93381,93384,93392,93393,93394,102544,102545). Case reports collected from the Drug Induced Liver Injury Network suggest this risk may be greater in people who carry the HLA B*35:01 allele (108401).
|
Theoretically, combining garcinia with other serotonergic drugs might increase the risk of serotonergic side effects, including serotonin syndrome.
In one report, a patient experienced serotonin syndrome after taking garcinia extract (60% hydroxycitric acid) 1000 mg daily in combination with escitalopram 20 mg, which had been taken for a year. The patient was switched to sertraline 50 mg daily and again experienced serotonin syndrome (23545).
|
Theoretically, high doses of green tea might increase the effects and side effects of 5-fluorouracil.
Animal research shows that taking green tea in amounts equivalent to about 6 cups daily in humans for 4 weeks prior to receiving a single injection of 5-fluorouracil increases the maximum plasma levels of 5-fluorouracil by about 2.5-fold and the area under the curve by 425% (98424).
|
Theoretically, green tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine doesn't seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Concomitant use of alcohol and caffeine can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, green tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Conflicting reports exist regarding the effect of green tea on bleeding risk when used with anticoagulant or antiplatelet drugs; however, most evidence suggests that drinking green tea in moderate amounts is unlikely to cause a significant interaction. Green tea contains small amounts of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects. Furthermore, the catechins and caffeine in green tea are reported to have antiplatelet activity (733,8028,8029,12882,100524).
|
Theoretically, taking green tea with antidiabetes drugs might interfere with blood glucose control.
|
Green tea extract seems to reduce the levels and clinical effects of atorvastatin.
In healthy humans, taking green tea extract 300 mg or 600 mg along with atorvastatin reduces plasma levels of atorvastatin by approximately 24%. The elimination of atorvastatin is not affected (102714). Atorvastatin is a substrate of organic anion-transporting polypeptides (OATPs). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs. Some OATPs are expressed in the small intestine and are responsible for the uptake of drugs and other compounds, which may have resulted in reduced plasma levels of atorvastatin (19079). It is not clear if drinking green tea alters the absorption of atorvastatin.
|
Green tea contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, green tea might interfere with the effects of bortezomib.
In vitro research shows that green tea polyphenols, such as epigallocatechin gallate (EGCG), interact with bortezomib and block its proteasome inhibitory action. This prevents the induction of cell death in multiple myeloma or glioblastoma cancer cell lines (17212). Advise patients taking bortezomib, not to take green tea.
|
Theoretically, green tea might reduce the effects of carbamazepine and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, green tea might reduce the levels and clinical effects of celiprolol.
In a small human study, taking green tea daily for 4 days appears to decrease blood and urine levels of celiprolol by at least 98% (104607). This interaction is possibly due to the inhibition of organic anion transporting polypeptide (OATP). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is found in the intestine (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in green tea.
Green tea contains caffeine. Cimetidine can reduce caffeine clearance by 31% to 42% (11736).
|
Theoretically, green tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Animal research suggests that, although green tea extract does not affect the elimination of clozapine, it delays the time to reach peak concentration and reduces the peak plasma levels (90173). Also, concomitant administration of green tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in green tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in green tea.
Green tea contains caffeine. Oral contraceptives can decrease caffeine clearance by 40% to 65% (8644).
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from green tea and increase caffeine levels.
|
Green tea is unlikely to produce clinically significant changes in the levels and clinical effects of CYP3A4 substrates.
|
Theoretically, green tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine might inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using green tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, green tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of felbamate and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Green tea can decrease blood levels of fexofenadine.
Clinical research shows that green tea can significantly decrease blood levels and excretion of fexofenadine. Taking green tea extract with a dose of fexofenadine decreased bioavailability of fexofenadine by about 30%. In vitro, green tea inhibits the cellular accumulation of fexofenadine by inhibiting the organic anion transporting polypeptide (OATP) drug transporter (111029). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates (19079,102714,102730).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, green tea might increase the levels and adverse effects of flutamide.
Green tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
|
Theoretically, green tea might reduce the levels and clinical effects of imatinib.
In animal research, a single dose of green tea extract reduces the area under the curve (AUC) of imatinib by up to approximately 64% and its main metabolite N-desmethyl imatinib by up to approximately 81% (104600). This interaction has not been shown in humans. The mechanism of action is unclear but may involve multiple pathways.
|
Theoretically, green tea might reduce the levels and clinical effects of lisinopril.
Preliminary clinical research shows that a single dose of green tea extract reduces plasma concentrations of lisinopril. Compared to a control group, peak levels and area under the curve (AUC) of lisinopril were reduced by approximately 71% and 66%, respectively (104599). This may be due to inhibition of organic anion transporting polypeptides (OATP) by green tea catechins (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, abrupt green tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Mexiletine can decrease caffeine elimination by 50% (1260).
|
Theoretically, green tea might increase the levels and adverse effects of midazolam.
Animal research suggests that green tea extract can increase the maximum plasma concentration, but not the half-life, of oral midazolam. This effect has been attributed to the inhibition of intestinal cytochrome P450 3A4 (CYP3A4) and induction of hepatic CYP3A4 enzymes by green tea constituents (20896). However, it is unlikely that this effect is clinically significant, as the dose used in animals was 50 times greater than what is commonly ingested by humans.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Green tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Green tea seems to reduce the levels and clinical effects of nadolol.
Preliminary clinical research shows that green tea consumption reduces plasma concentrations of nadolol. Compared to a control group, both peak levels and total drug exposure (AUC) of nadolol were reduced by approximately 85% in subjects who drank green tea daily for two weeks. Drinking green tea with nadolol also significantly reduced nadolol's systolic blood pressure lowering effect (19071). Other clinical research shows that a single dose of green tea can affect plasma nadolol levels for at least one hour (102721). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is involved in the uptake of nadolol in the intestine (19071,19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, green tea might increase the levels and adverse effects of nicardipine.
Green tea contains EGCG. Animal research shows that EGCG increases the area under the curve (AUC) and absolute oral bioavailability of nicardipine. The mechanism of action is thought to involve inhibition of both intestinal P-glycoprotein and hepatic cytochrome P450 3A (90136). The effect of green tea itself on nicardipine is unclear.
|
Theoretically, concomitant use might increase the risk of hypertension.
Green tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Green tea seems to reduce the levels of nintedanib.
Clinical research shows that green tea can significantly decrease blood levels of nintedanib. Taking green tea extract twice daily for 7 days 30 minutes prior to a meal along with nintedanib with the meal decreased the 12-hour area under the curve (AUC) values for nintedanib by 21%. There was no effect on the maximum concentration of nintedanib (111028).
|
Theoretically, green tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds. Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates, including lisinopril, and celiprolol (19079,102714,102730).
|
Green tea might increase the levels and adverse effects of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that green tea inhibits drug efflux by P-gp, potentially increasing serum levels of P-gp substrates. Case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking green tea and certain P-gp substrates (111644).
|
Theoretically, green tea might decrease the effects of pentobarbital.
Green tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, green tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, green tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, green tea might increase the levels and clinical effects of pioglitazone.
Green tea contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Green tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, green tea extract might alter the absorption and distribution of rosuvastatin.
In animal research, giving green tea extract with rosuvastatin increased plasma levels of rosuvastatin. Rosuvastatin is a substrate of organic anion-transporting polypeptide (OATP)1B1, which is expressed in the liver. The increased plasma levels may have been related to inhibition of OATP1B1 (102717). However, in humans, taking EGCG with rosuvastatin reduced plasma levels of rosuvastatin, suggesting an inhibition of intestinal OATP (102730). It is not clear if drinking green tea alters the absorption of rosuvastatin.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Green tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, green tea might increase the levels and adverse effects of theophylline.
Green tea contains caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, green tea might increase the levels and adverse effects of tiagabine.
Green tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of both verapamil and caffeine.
Animal research suggests that the green tea constituent EGCG increases the area under the curve (AUC) values for verapamil by up to 111% and its metabolite norverapamil by up to 87%, likely by inhibiting P-glycoprotein (90138). Also, theoretically, concomitant use of verapamil and caffeinated beverages such as green tea might increase plasma caffeine concentrations and the risk of adverse effects, due to the caffeine contained in green tea. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, green tea may increase the risk of bleeding if used with warfarin.
Conflicting reports exist regarding the potential of green tea to antagonize the effect of warfarin; however, most evidence suggests that drinking green tea in moderation is unlikely to cause a significant interaction. Green tea contains a small amount of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects (1460,1461,1463,8028). Therefore, use of green tea in moderate amounts is unlikely to antagonize the effects of warfarin; however, very large doses should be avoided.
|
Gum arabic can reduce the absorption of amoxicillin.
A small study in healthy volunteers shows that taking amoxicillin and gum arabic concurrently significantly reduces the absorption of amoxicillin. Separate doses of amoxicillin from gum arabic by at least 2 hours (12654).
|
Theoretically, gum arabic can alter the absorption of oral drugs due to its fiber content.
Gum arabic has been used as a suspending osmotic agent in drug formulations. It might improve bioavailability of water-insoluble drugs like naproxen, but reduce absorption of polar drugs like amoxicillin (12654,104058). To avoid changes in absorption, take gum arabic 30-60 minutes after oral medications.
|
Theoretically, taking gymnema with antidiabetes drugs might increase the risk of hypoglycemia.
Gymnema reduces blood glucose levels in some human and animal research. In human studies, it has been shown to enhance the blood glucose lowering effects of hypoglycemic drugs (45,46,92119,92121,92123). However, other research in adults with prediabetes or metabolic syndrome suggests that gymnema does not reduce fasting levels of blood glucose (96235,105346). Until more is known, monitor blood glucose levels closely.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP1A2.
Animal and in vitro research shows that gymnema can inhibit the CYP1A2 enzyme (96236,96237,96238). In one animal study, oral administration of gymnema for 7 days increased the plasma concentrations of phenacetin, a CYP1A2 substrate, by about 1.4-fold and reduced the clearance of phenacetin by about 29% (96237).
|
Theoretically, gymnema might increase or decrease levels of drugs metabolized by CYP2C9.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP3A4.
One in vitro study using rat liver microsomes shows that gymnema can modestly inhibit the CYP3A4 enzyme (96238). However, other in vitro research using human liver microsomes shows that gymnema does not affect CYP3A4 activity (96236). Animal research also shows that gymnema does not alter the function of CYP3A4. In one study in rats, oral administration of gymnema for 7 days did not alter the clearance of amlodipine, a CYP3A4 substrate (96237).
|
Theoretically, taking gymnema with phenacetin might increase the levels of phenacetin.
|
Theoretically, taking gymnema with tolbutamide might the decrease levels of tolbutamide.
Animal research shows that gymnema, administered orally for 7 days, increases the clearance of tolbutamide by 2.4-fold when compared to control (96237).
|
Theoretically, Phaseolus vulgaris might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, the caffeine in yerba mate might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Yerba mate contains caffeine. Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). Still, some researchers recommend that methylxanthines, such as caffeine, as well as methylxanthine-containing products, should be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use of alcohol and yerba mate might increase levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, the caffeine in yerba mate may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking yerba mate with antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, the caffeine in yerba mate might reduce the efficacy of benzodiazepines.
|
Theoretically, the caffeine in yerba mate might increase the cardiac inotropic effects of beta-agonists, especially if taken in large amounts.
Yerba mate contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, the caffeine in yerba mate might reduce the effects of carbamazepine and increase the risk for convulsions.
Yerba mate contains caffeine. Animal research suggests that caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine two-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of the caffeine contained in yerba mate.
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Yerba mate contains caffeine. Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of the caffeine contained in yerba mate.
|
Theoretically, concomitant use of CYP1A2 inhibitors and yerba mate might increase levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, yerba mate might increase the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that yerba mate extract inhibits CYP3A4 enzymes (105811). Theoretically, taking yerba mate may increase levels and adverse effects of CYP3A4 substrates.
|
Theoretically, the caffeine in yerba mate might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Yerba mate contains caffeine. Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). Still, some researchers recommend that methylxanthines, such as caffeine, as well as methylxanthine-containing products, should be stopped 24 hours prior to pharmacological stress (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, the caffeine in yerba mate might increase the risk of hypokalemia when used concomitantly with other diuretics.
|
Theoretically, the caffeine in yerba mate might increase the risk for stimulant adverse effects when used concomitantly with ephedrine.
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of the caffeine in yerba mate.
Yerba mate contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, the caffeine in yerba mate might reduce the effects of ethosuximide and increase the risk for convulsion.
Yerba mate contains caffeine. Animal research shows that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, the caffeine in yerba mate might reduce the effects of felbamate and increase the risk for convulsion.
Yerba mate contains caffeine. Animal research shows that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of flutamide.
Yerba mate contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, abrupt withdrawal of the caffeine in yerba mate might increase serum lithium levels.
|
Theoretically, metformin might increase the levels and adverse effects of the caffeine in yerba mate.
Yerba mate contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of the caffeine in yerba mate.
Yerba mate contains caffeine. Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, use of yerba mate with midazolam might increase midazolam metabolite levels and adverse effects.
In vitro research shows that yerba mate extract containing 6.75% chlorogenic acid significantly inhibits the metabolism of midazolam via inhibition of cytochrome P450 3A4 (CYP3A4)(105811).
|
Theoretically, the caffeine in yerba mate might increase risk of a hypertensive crisis when used concomitantly with MAOIs.
Yerba mate contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, the caffeine in yerba mate might increase risk of hypertension when used concomitantly with nicotine.
|
Theoretically, the caffeine in yerba mate might decrease the effects of pentobarbital.
The caffeine in yerba mate might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, the caffeine in yerba mate might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension as well as the levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, the caffeine in yerba mate might reduce the effects of phenytoin and increase the risk for convulsions.
Yerba mate contains caffeine. Animal research suggests that caffeine can decrease the anticonvulsant activity of phenytoin (23561). The effect does not seem to be related to the seizure threshold-lowering effects of caffeine. However, the exact mechanism of this interaction is unclear.
|
Theoretically, the caffeine in yerba mate might increase the levels and clinical effects of pioglitazone.
Yerba mate contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of the caffeine in yerba mate.
|
Theoretically, concomitant use of riluzole and yerba mate might increase levels and adverse effects of both riluzole and the caffeine in yerba mate.
Yerba mate contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use of stimulant drugs and yerba mate might increase stimulant adverse effects.
Yerba mate contains caffeine. Due to the CNS stimulant effects of the caffeine, concomitant use can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of the caffeine in yerba mate.
Yerba mate contains caffeine. Terbinafine decreases the rate of caffeine clearance by 19% (11740).
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of theophylline.
Yerba mate contains caffeine. Caffeine decreases theophylline clearance by 23% to 29% (11741).
|
Theoretically, the caffeine in yerba mate might increase the levels and adverse effects of tiagabine.
Yerba mate contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of the caffeine in yerba mate.
Yerba mate contains caffeine. In vitro research shows that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, the caffeine in yerba mate might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, verapamil might increase the levels and adverse effects of the caffeine in yerba mate.
Yerba mate contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Below is general information about the adverse effects of the known ingredients contained in the product Extrim Shape. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, cascara sagrada seem to be well tolerated when used appropriately, short-term.
Most Common Adverse Effects:
Orally: Mild abdominal discomfort and cramps.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity. Fresh or improperly aged cascara sagrada bark can cause severe vomiting.
Endocrine ...Orally, long-term use of cascara sagrada can lead to potassium depletion (4).
Gastrointestinal
...Orally, cascara sagrada can commonly cause mild abdominal discomfort, colic, and cramps (4).
In some cases, chronic use can cause pseudomelanosis coli. Pseudomelanosis coli (pigment spots in intestinal mucosa) is believed to be harmless, usually reverses with discontinuation, and is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138).
Fresh or improperly aged cascara sagrada bark can cause severe vomiting due to the presence of free anthrone constituents (2,92307).
Genitourinary ...Orally, long-term use of cascara sagrada can lead to albuminuria and hematuria (4).
Hepatic ...There is some concern about potential liver problems with cascara sagrada. In some cases, cascara sagrada bark 750-1275 mg (containing approximately 21 mg cascaroside) daily in divided doses for three days resulted in cholestatic hepatitis, ascites, and portal hypertension. Symptoms resolved following discontinuation of cascara sagrada (6895,92306).
Musculoskeletal ...Orally, long-term use of cascara sagrada can lead to muscle weakness and finger clubbing (4).
Other ...Orally, long-term use of cascara sagrada can lead to cachexia (4).
General
...Orally and topically, chitosan seems to be well tolerated, short-term.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, flatulence, epigastric discomfort, and nausea.
Dermatologic ...In one clinical trial, a subject with kidney failure reported itching during 12 weeks of oral chitosan treatment (1942). It is not clear if this was related to the underlying renal failure or the use of oral chitosan.
Gastrointestinal ...Orally, chitosan has been reported to cause epigastric discomfort, constipation, flatulence, diarrhea, nausea, and dryness of the throat (1942,3243,9986,11307,14314,41688,92781,100170). Excessive discharge of fat in the feces, also known as steatorrhea, has been reported with chitosan therapy (41724,41726). Theoretically, chitosan may alter the normal intestinal flora via antimicrobial activity, which could interfere with lipid digestibility and bile acid metabolism, leading to the growth of resistant pathogens (41687,41709,41725).
Musculoskeletal ...Orally, chitosan has been reported to cause swollen heels and wrists in two patients (41688).
Neurologic/CNS ...Headaches have been reported in patients taking oral chitosan (41688).
Ocular/Otic ...Topically, an eye drop containing chitosan-N-acetylcysteine has been reported to cause itching and irritation of the eyes (97710).
General
...Orally, garcinia and its constituent, hydroxycitric acid (HCA), seem to be generally well tolerated in clinical research.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal discomfort, headache, and nausea.
Serious Adverse Effects (Rare):
Orally: Garcinia has been linked with cases of hepatotoxicity and liver failure. There have also been rare cases of mania and pancreatitis.
Cardiovascular
...There is a case report of a 48-year-old female who developed acute necrotizing eosinophilic myocarditis (ANEM) after using a garcinia supplement orally for 2.
5 weeks. On admission to hospital, she was hypotensive and had an elevated serum troponin level, progressing to fulminant heart failure, acute kidney failure, and sustained ventricular arrhythmias. She recovered after treatment with extra-corporeal membrane oxygenation (ECMO) and high-dose corticosteroids (88160). Although the patient had no prior medical history and was not taking any medications, this cannot conclusively be attributed to garcinia.
When taken orally, a specific formulation of the multi-ingredient product Hydroxycut (Iovate Health Sciences Inc.), which was available until 2009, has been associated with malignant hypertension and hypertensive retinopathy. Hydroxycut contains caffeine, garcinia, gymnema, green tea, glucomannan, guarana extract, and willow bark. The suspected causal agent is caffeine, which is dosed at 600 mg daily if Hydroxycut is taken as recommended; however, the responsibility of the other ingredients cannot be ruled out (16527).
Endocrine ...In one case report, a 56-year-old female with pre-existing diabetes, hepatitis C, and hypertension developed diabetic ketoacidosis (DKA) and pancreatitis after taking an unknown amount of garcinia and African mango for one month. Upon admission, she presented with altered mental status, elevated serum glucose and lipase, and high anion gap metabolic acidosis. After 3 days of intensive supportive care, the DKA and pancreatitis resolved. The suspected probable causal agent was garcinia; however, African mango cannot be ruled out (97341). There have been at least 3 other cases of acute pancreatitis associated with use of garcinia (unknown dose) for 2 weeks and up to 7 months in adults ages 36-82 years (105056,105058,105071).
Gastrointestinal ...Orally, garcinia and its active constituent hydroxycitric acid (HCA) have caused mild and infrequent nausea, diarrhea, and other gastrointestinal symptoms (728,11977,19153,88158,88159).
Hepatic
...Orally, garcinia and its constituent hydroxycitric acid (HCA) might cause liver toxicity.
Several cases of acute liver toxicity have been reported in patients taking garcinia supplements (93392,93393,93394,95573,102544,102545,104431,111241). Reported doses of garcinia extract range from 480-1800 mg daily, providing up to 900 mg HCA daily (93392,93394,95573,102544,104431). However, not all experts agree that HCA plays a causal role in the hepatotoxicity associated with garcinia supplements; some suggest other mechanisms may be in play, such as immune-mediated processes (95576,108401). In most cases, patients presented with a hepatocellular pattern of toxicity and symptoms of abdominal pain, coagulopathy, jaundice, and elevated transaminases after taking garcinia for several weeks to several months (93393,93394,95573,102544,102545,104431,108401,111241). In most of these cases, there was no evidence of other natural causes of liver disease, such as viral hepatitis. Some of these patients used acetaminophen at recommended doses for limited durations, suggesting that a potential synergistic effect may occur when multiple hepatotoxic agents are used concomitantly.
The Drug-Induced Liver Injury Network has identified 22 cases (11 moderate; 7 severe) of liver injury from garcinia, with 5 cases occurring with garcinia alone, 16 cases occurring in combination with green tea, and 1 case occurring in combination with ashwagandha. Clinical presentations of liver injury related to garcinia closely resemble green tea-related liver injury. Most patients (82%) presented with a hepatocellular pattern of enzyme elevations. The median age of these case reports was 35 years, 41% identified as Hispanic, and most patients were overweight but not obese. In case reports involving garcinia alone, the carrier frequency on HLAB*35:01 was 60%, which is higher than the carrier frequency found in reports of liver injury due to other supplements (19%) and in population controls (11%). Within 3 months of injury onset, 1 patient required liver transplantation and 1 patient died from liver injury (108401).
There have been at least four cases of liver failure requiring transplantation associated with garcinia supplements (93392,95573,98425,104431). In one case related specifically to garcinia, a 52-year-old female had been taking a combination product (USA Nutra Labs) providing garcinia 1000 mg daily, standardized to 60% HCA. The supplement also provided calcium 50 mg, chromium 200 mcg, and potassium 50 mg. Symptoms started within a few weeks of initiation of the product (93392). In another case, a 34-year-old Hispanic male experienced acute liver failure requiring transplant after taking a specific garcinia product (Garcinia Cambogia 5:1 Extract, Swanson Vitamins) 160 mg three times daily before meals for 5 months (95573). In other reports, one 26-year-old male and one female presented to the emergency room with liver failure after 2-7 months of taking a supplement containing garcinia and green tea, with or without whey protein, Veldt raisin, and coffea arabica (98425,104431).
There have also been numerous cases of acute liver toxicity associated with combination products containing garcinia, such as Hydroxycut (Iovate Health Sciences Inc) (13037,53511,93380,93381,93384,93385,96535,98425,104431). Available until 2009, Hydroxycut contained garcinia, green tea, chromium, caffeine, calcium, potassium, and gymnema. A currently available garcinia-containing combination product called Seryburn Day Triple has also been associated with supplement-induced liver injury. (13037,93380,93381,95570,95572,95575,111241). In most of these cases, patients had elevated levels of liver enzymes without evidence of chronic liver disease. Patients usually developed symptoms within 1-12 weeks of taking the product. The clinical pattern of liver damage was often hepatocellular. Most cases reported altered liver enzyme values including ALT, AST, bilirubin, alkaline phosphatase, and international normalized ratio. In most cases, symptoms resolved with near normalization of enzyme levels once the garcinia-containing combination product was discontinued (13037,53511,93380,93381,93384,95567,95572,95575,111241).
However, there is one report of transplant related to Hydroxycut use (93381). As the suspected causal agents, garcinia and green tea were removed from the product during reformulation in 2009 (13037,53511,93380,93381,93384). Hepatotoxicity has been reported in at least one new formulation of Hydroxycut not containing garcinia (93394). Consequently, some experts believe that there is not enough information to attribute hepatotoxicity from this product to garcinia or HCA (95576). Also, in some cases, causality of hepatotoxicity was less clear because patients were taking many other supplements and drugs (95570).There is also a report of fatal liver failure in an obese female taking montelukast while also taking two dietary supplements containing multiple ingredients, including garcinia, gymnema, chromium, bitter orange, and many others. The authors speculated that the combination of montelukast with one or more ingredients in these dietary supplements may have resulted in liver failure (93385).
Musculoskeletal ...Orally, garcinia-containing products have been associated with rhabdomyolysis. There is a case report of a patient who developed rhabdomyolysis 3 hours after ingestion of an herbal product containing ephedra, guarana, chitosan, gymnema, garcinia, and chromium (19154). Since there were multiple ingredients, the effect cannot be conclusively attributed to garcinia. Another case of rhabdomyolysis has been reported for a patient taking an undetermined formulation of Hydroxycut at a dose of 4 caplets daily, naproxen sodium 220 mg as needed for pain, dextroamphetamine daily for 5 days, and hydrocodone-acetaminophen and cyclobenzaprine for pain. Two weeks later, after stopping Hydroxycut and receiving supportive care, the rhabdomyolysis resolved. Hydroxycut was determined to be possibly associated with the rhabdomyolysis (95566). Since Hydroxycut contains multiple ingredients and garcinia content was possible but not confirmed, a causal relationship with garcinia could not be determined.
Neurologic/CNS ...Orally, garcinia and its active constituent hydroxycitric acid (HCA) may cause headache and dizziness (11977). A 35-year-old female reported ocular complications, headache, dizziness, and nausea after taking garcinia extract, providing more than 500 mg of HCA, three times daily for one week. The patient's neurologic symptoms resolved one day after discontinuing the garcinia extract (102546). It is unclear if these neurologic adverse effects were separate from or related to the patient's visual disturbances.
Ocular/Otic ...In one case, a 35-year-old female presented with ocular pain in both eyes, decreased vision in the left eye, headache, dizziness, and nausea after taking garcinia extract orally for one week. Ophthalmologic testing was consistent with adverse ocular effects, showing myopic shift with anterior chamber shallowing and swelling of retinal nerve fiber and macula. The patient reported taking a garcinia product containing hydroxycitric acid 500 mg three times daily, which was more than double the recommended dose per the product label. Symptoms resolved upon discontinuation of the garcinia extract and treatment with oral and topical steroids (102546).
Psychiatric ...Orally, garcinia supplements have been linked to several cases of mania. Typically, symptoms develop 1-8 weeks after starting garcinia. In a report of three patients, symptoms included reduced need for sleep, increased activities and spending, delusions of grandiosity, pressured speech, and agitation. Two of the patients were previously diagnosed with bipolar disorder, and use of garcinia was believed to precipitate episodes during stable phases of the disease. The third patient had no history of bipolar disorder, and use of garcinia was thought to possibly have unmasked previously undiagnosed primary bipolar disorder. In all three cases, recovery included discontinuation of garcinia (95568). In a separate case report, a 23-year-old male taking a specific combination product containing garcinia (Hydroxycut) 1-2 capsules daily for 1 month presented to the emergency room with mania. The patient had no history of bipolar disorder. Although the patient was started on risperidone and clonazepam, symptoms resolved following discontinuation of the supplement. Treatment was discontinued within 4 days of initiation, and the patient remained asymptomatic (95574). A 22-year-old female with no history of bipolar disorder developed mania and psychosis, presenting 10 days after starting Garcinia Cambogia Plus (Apex Vitality Health) 500-1500 mg daily, and Cleanse and Detox (Apex Vitality Health). The latter supplement contains raspberry ketones, licorice root, pumpkin seed, buckthorn root, Cascara sagrada, Irvingia gabonensis, rhubarb, pectin, Lactobacillus acidophilus, and aloe. Symptoms improved upon stopping the supplements and starting lithium and quetiapine (99421).
General
...Orally, green tea is generally well tolerated when consumed as a beverage in moderate amounts.
Green tea extract also seems to be well tolerated when used for up to 12 months.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, dyspepsia, flatulence, and nausea.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, hypokalemia, and thrombotic thrombocytopenic purpura have been reported rarely.
Cardiovascular
...Acute or short-term oral administration of green tea may cause hypertension (53719,54014,54065,54076,102716).
The risk may be greater for green tea products containing more than 200 mg epigallocatechin gallate (EGCG) (90161). However, consumption of brewed green tea does not seem to increase blood pressure or pulse, even in mildly hypertensive patients (1451,1452). In fact, some evidence suggests that habitual tea consumption is associated with a reduced risk of developing hypertension (12518). Also, epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension or with cardiovascular disease mortality in patients with hypertension (13739,111027). Rarely, green tea consumption may cause hypotension (53867).
Epidemiological research suggests that regular caffeine intake of up to 400 mg per day, or approximately 8 cups of green tea, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, and temporary loss of consciousness has been associated with the combined use of ephedra and caffeine (2729). There is also a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275). In theory, combining caffeinated green tea with ephedra would have similar effects.
In a case report, the EGCG component of a specific weight loss supplement (Hydroxycut) was thought to be responsible for atrial fibrillation (54028). The patient was given two doses of intravenous diltiazem and was loaded with intravenous digoxin. Thirty-six hours after the last product dose, she spontaneously converted to normal sinus rhythm. The authors suggested that the block of the atrial-specific KCNA5 potassium channel likely played a role in this response.
A case of thrombotic thrombocytopenic purpura has been reported for a patient who consumed a weight loss product containing green tea (53978). She presented at the emergency department with a one-week history of malaise, fatigue, and petechiae of the skin. Twelve procedures of plasmapheresis were performed, and corticosteroid treatment was initiated. She was discharged after 20 days.
Dermatologic ...Orally, green tea may cause skin rashes or skin irritation (53731,54038,90161,90187,102716). Topically, green tea may cause local skin reactions or skin irritation, erythema, burning, itching, edema, and erosion (53731,54018,97136,104609,111031). A green tea extract ointment applied to the cervix can cause cervical and vaginal inflammation, vaginal irritation, and vulval burning (11310,36442,36438). When applied to external genital or perianal warts, a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins can cause erythema, pruritus, local pain, discomfort and burning, ulceration, induration, edema, and vesicular rash (15067,53907).
Endocrine
...There is some concern that, due to its caffeine content, green tea may be associated with an increased risk of fibrocystic breast disease, breast cancer, and endometriosis.
However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as green tea, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
A case of hypoglycemia has been reported for a clinical trial participant with type 2 diabetes who used green tea in combination with prescribed antidiabetes medication (54035).
Gastrointestinal ...Orally, green tea beverage or supplements can cause nausea, vomiting, abdominal bloating and pain, constipation, dyspepsia, reflux, morning anorexia, increased thirst, flatulence, and diarrhea. These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,36398,53719,53867,53936,54038,54076,90139,90140)(90161,90175,90187,97131,97136,102716).
Hepatic
...There is concern that some green tea products, especially green tea extracts, can cause hepatotoxicity in some patients.
In 2017, the regulatory agency Health Canada re-issued a warning to consumers about this concern. The updated warning advises patients taking green tea extracts, especially those with liver disease, to watch for signs of liver toxicity. It also urges children to avoid taking products containing green tea extracts (94897). In 2020, the United States Pharmacopeia (USP) formed an expert panel to review concerns of green tea extract-related hepatotoxicity. Based on their findings, USP determined that any products claiming compliance with USP quality standards for green tea extract must include a specific warning on the label stating "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)" (102722).
Numerous case reports of hepatotoxicity, primarily linked to green tea extract products taken in pill form, have been published. A minimum of 29 cases have been deemed at least probably related to green tea and 38 have been deemed possibly related. In addition, elevated liver enzymes have been reported in clinical research (14136,15026,53740,53746,53775,53859,54027,90139,90162,90164)(93256,94898,94899,102716,102720,102722,107158,111020,111644). Most cases of toxicity have had an acute hepatitis-like presentation with a hepatocellular-elevation of liver enzymes and some cholestasis. Onset of hepatotoxic symptoms usually occurs within 3 months after initiation of the green tea extract supplement, and symptoms can persist from 10 days to 1 year (95439,94897,94898,107158). Some reports of hepatotoxicity have been associated with consumption of green tea-containing beverages as well (15026,53742,54016,90125,90143).
In most cases, liver function returned to normal after discontinuation of the green tea product (14136,15026,53859,93256,107158). In one case, use of a specific ethanolic green tea extract (Exolise, Arkopharma) resulted in hepatotoxicity requiring a liver transplant. Due to concerns about hepatotoxicity, this specific extract was removed from the market by the manufacturer (14310). Since then, at least 5 cases of liver toxicity necessitating liver transplantation have been reported for patients who used green tea extracts (94898,107158). In another case, use of green tea (Applied Nutrition Green Tea Fat Burner) in combination with whey protein, a nutritional supplement (GNC Mega Men Sport), and prickly pear cactus resulted in acute liver failure (90162).
Despite the numerous reports of hepatotoxicity associated with the use of green tea products, the actual number of hepatotoxicity cases is low when the prevalence of green tea use is considered. From 2006 to 2016, liver injury from green tea products was estimated have occurred in only 1 out of 2.7 million patients who used green tea products (94897,95440).
In addition to the fact that green tea hepatotoxicity is uncommon, it is also not clear which patients are most likely to experience liver injury (94897,95440). The hepatotoxicity does not appear to be an allergic reaction or an autoimmune reaction (94897). It is possible that certain extraction processes, for example, ethanolic extracts, produce hepatotoxic constituents. However, in most cases, the presence of contaminants in green tea products has not been confirmed in laboratory analyses (90162).
Although results from one analysis of 4 small clinical studies disagrees (94899), most analyses of clinical data, including one conducted by the European Food Safety Association, found that hepatotoxicity from green tea products is associated with the dose of EGCG in the green tea product. Results show that daily intake of EGCG in amounts greater than or equal to 800 mg per day is associated with a higher incidence of elevated liver enzymes such as alanine transaminase (ALT) (95440,95696,97131). However, it is still unclear what maximum daily dose of EGCG will not increase liver enzyme levels or what minimum daily dose of EGCG begins to cause liver injury. In many cases of liver injury, the dose of green tea extract and/or EGCG is not known. Therefore, a minimum level of green tea extract or EGCG that would cause liver injury in humans cannot be determined (102722). Keep in mind that daily intake of green tea infusions provides only 90-300 mg of EGCG daily. So for a majority of people, green tea infusions are likely safe and unlikely to cause liver injury (95696). Also, plasma levels of EGCG are increased when green tea catechins are taken in the fasting state, suggesting that green tea extract should be taken with food (102722).
Until more is known, advise patients that green tea products, especially those containing green tea extract, might cause liver damage. However, let them know that the risk is uncommon, and it is not clear which products are most likely to cause the adverse effect or which patients are most likely to be affected. Advise patients with liver disease to consult their healthcare provider before taking products with green tea extract and to notify their healthcare provider if they experience symptoms of liver damage, including jaundice, dark urine, sweating, or abdominal pain (102722).
Immunologic ...Orally, matcha tea has resulted in at least one case of anaphylaxis related to green tea proteins. A 9-year-old male experienced systemic redness and hives, nausea, and anaphylaxis 60 minutes after consuming matcha tea-flavored ice cream (107169). The caffeine found in green tea can also cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Orally, the ingestion of the green tea constituent epigallocatechin gallate (EGCG) or a decaffeinated green tea polyphenol mixture may cause mild muscle pain (36398).
There is some concern regarding the association between caffeinated green tea products and osteoporosis. Epidemiological evidence regarding the relationship between caffeinated beverages such as green tea and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or about 8 cups of green tea, doesn't seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS
...Orally, green tea can cause central nervous system stimulation and adverse effects such as headache, anxiety, dizziness, insomnia, fatigue, agitation, tremors, restlessness, and confusion.
These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,53719,90139,102716). The green tea constituent epigallocatechin gallate (EGCG) or decaffeinated green tea may also cause mild dizziness and headache (36398).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729).
Topically, green tea extract (Polyphenon E ointment) may cause headache when applied to the genital area (36442).
Psychiatric ...Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, and psychological dependence (11832). The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Other researchers suggest symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...A case of granulomatous alveolitis with lymph follicles has been reported for a 67-year-old female who used green tea infusions to wash her nasal cavities for 15 years (54088). Her symptoms disappeared 2 months after stopping this practice and following an undetermined course of corticosteroids. In a case report, hypersensitivity pneumonitis was associated with inhalation of catechin-rich green tea extracts (54025). Occupational exposure to green tea dust can cause sensitization, which may include nasal and asthmatic symptoms (11365).
Renal ...There are two cases of hypokalemia associated with drinking approximately 8 cups daily of green tea in an elderly couple of Asian descent. The hypokalemia improved after reducing their intake by 50%. It is possible that this was related to the caffeine in the green tea (98418).
Other ...Orally, intake of a specific green tea extract product (Polyphenon E) may cause weight gain (90139).
General
...Orally, gum arabic seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, flatulence, mild diarrhea, nausea, and vomiting.
Gastrointestinal ...Orally, gum arabic can cause minor gastrointestinal disturbances such as abdominal bloating, flatulence, nausea, vomiting, cramping, and mild diarrhea (8072,18237,99098,105038,105040,108051). These effects occurred in 15%, 82%, and 90% of subjects respectively in one study (18237). They may subside with continued use within 2 weeks (8072,18237,99098,105038).
Immunologic ...Gum arabic might cause allergic reactions. In one case report, a patient had an immunoglobulin E response after exposure to gum arabic. However, there have been no identified case reports of allergic reactions after oral exposure to gum arabic (19636,105040).
General ...Orally, gymnema seems to be well tolerated.
Hepatic ...A case of drug-induced hepatitis characterized by weakness, fatigue, jaundice, and elevated liver enzymes, has been reported for a patient who consumed gymnema tea three times daily for 10 days. The patient was administered prednisone 60 mg once daily and was eventually tapered off prednisone and discharged. Laboratory values normalized after 6 months (95005). A case of hepatitis-associated aplastic anemia characterized by jaundice, elevated liver function tests, and pancytopenia has been reported for a patient who consumed gymnema 2 grams twice daily for at least a month. Treatment with ursodeoxycholic acid for 8 weeks led to resolution of cholestatic hepatitis; however, the pancytopenia was not responsive to treatment with immunosuppressive drugs and the patient died 5 months after presentation (110021). The exact reason for these adverse effects is not clear; they may have been idiosyncratic.
General
...Orally, Phaseolus vulgaris extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, flatulence, nausea, stomach pain, and vomiting.
Serious Adverse Effects (Rare):
Orally: Hypersensitivity reactions, including anaphylaxis, in sensitive individuals.
Dermatologic ...Topically, Phaseolus vulgaris may cause contact dermatitis in sensitive individuals. A case of occupational contact dermatitis characterized by pruritus, erythema, eczema, and dyspnea has been reported for a 41-year-old farmer who handled the green parts of Phaseolus vulgaris (29920).
Gastrointestinal ...Orally, an extract of the Phaseolus vulgaris variety white kidney bean, as well as alpha-amylase inhibitors isolated from Phaseolus vulgaris, might cause nausea, vomiting, diarrhea, flatulence, constipation, satiety, and stomach pains (11265,18223,29925,104874). Also, white kidney bean extract, taken orally along with carob gum, may cause constipation, flatulence, soft stools, and reduced levels of vitamin B12 and folic acid (10633). Consuming large amounts of raw or undercooked Phaseolus vulgaris beans or extract can cause nausea, vomiting, diarrhea, and gastroenteritis due to the content of phytohaemagglutinin, a plant protein lectin (18223,29916,93082). Cooking usually destroys lectins (18).
Immunologic ...Orally, Phaseolus vulgaris may cause hypersensitivity reactions, including anaphylaxis, in sensitive individuals. A case of severe anaphylactic shock requiring epinephrine and steroid treatment has been reported for a 23-year-old following ingestion of cooked kidney beans, a variety of Phaseolus vulgaris. The causative agents were reported to be phaseolin (vicilin) and phytohaemagglutinin (29918). Also, a case of angioedema resulting from type I hypersensitivity has been reported for a one-year-old child following inhalation of vapors from or ingestion of cooked white beans, another variety of Phaseolus vulgaris (29919).
General
...When used orally in high doses or long-term, yerba mate may be unsafe.
Most Common Adverse Effects:
Orally: Many of the adverse effects of yerba mate can be attributed to its caffeine content, such as diuresis, gastric irritation, insomnia, nausea, nervousness, restlessness, tachycardia, tachypnea, and tremors.
Serious Adverse Effects (Rare):
Orally: Cancer, hyperglycemia, ketosis, metabolic acidosis, sinus tachycardia. These adverse effects are more common with high doses or long-term use.
Cardiovascular
...Orally, yerba mate may cause cardiovascular-related adverse effects due to its caffeine content.
High doses of mate providing 250 mg of caffeine can increase blood pressure. However, this doesn't seem to occur in people who habitually consume caffeine products (2722). Also, epidemiological research suggests that there is no association of caffeine consumption with incidence of hypertension (13739).
Due to its caffeine content, yerba mate may cause other adverse cardiovascular effects when used orally. These effects include tachycardia, quickened respiration, chest pain, premature heartbeat, arrhythmia, and hypertension (11832,11838,13735). Large doses of caffeine can also cause massive catecholamine release and subsequent sinus tachycardia (13734). There is also one report of venous occlusive disease associated with excessive, long-term mate consumption (5614).
Epidemiological research has found that regular caffeine intake of up to 400 mg per day, or approximately 8-10 cups of yerba mate, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining caffeine beverages such as yerba mate with ephedra may theoretically increase the risk of adverse cardiovascular events. There is one report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for six weeks (1275).
Endocrine ...Yerba mate contains caffeine. Orally, large doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734). Some evidence shows caffeine is associated with fibrocystic breast disease, breast cancer, and endometriosis in females. However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal ...Orally, drinking yerba mate infusions has been associated with nausea and irritation of the stomach or oral mucosa in a small number of patients in one clinical study (86657). Yerba mate contains caffeine. Orally, caffeine can cause gastric irritation, nausea, and vomiting (11832,11838,13735). Caffeine-containing beverages can stimulate gastric secretion in humans, which may potentiate ulcer symptoms (36404). Some believe that long-term use of caffeine can cause withdrawal symptoms following discontinuation of use. However, the existence of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (2723,11839). Gastrointestinal withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant gastrointestinal symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Hematologic ...Yerba mate contains caffeine. Orally, caffeine can cause hypokalemia (11832,11838,13735).
Immunologic ...Yerba mate contains caffeine. Orally, caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Yerba mate contains caffeine.
Some epidemiological research suggests that caffeine may be associated with an increased risk of osteoporosis, but conflicting evidence exists. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or approximately 8-10 cups of yerba mate, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317,98806).
Some researchers believe that stopping regular use of caffeine may cause withdrawal symptoms such as muscle tension and muscle pains. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839). However, there is a case of withdrawal in a premature neonate following chronic parental drinking of yerba mate (86618). Symptoms included hypertonia in the limbs and brisk tendon reflexes. The authors indicated that high concentrations of caffeine and theobromine were found in the placenta, cord serum, neonatal urine, parental and neonatal hair, meconium, and breast milk. Although symptoms progressively disappeared at 84 hours of age, irritability was still occasionally present at discharge (24 days of age).
Neurologic/CNS
...Orally, drinking yerba mate infusions has been associated with insomnia in a small number of patients in one clinical study (86657).
Yerba mate contains caffeine. Orally, caffeine can cause insomnia, nervousness, headache, anxiety, agitation, jitteriness, restlessness, ringing in the ears, tremors, delirium, and convulsions (11832,11838,13735). Caffeine may also exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204).
There is some concern that stopping regular use of caffeine may cause withdrawal symptoms such as headache, tiredness and fatigue, decreased energy, alertness, and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentrating, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Other symptoms such as delirium, nervousness, restlessness, and anxiety have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839). However, there is a case of withdrawal in a premature neonate following chronic parental drinking of yerba mate (86618). Symptoms included jitteriness and irritability and a high-pitched cry. The authors indicated that high concentrations of caffeine and theobromine were found in the placenta, cord serum, neonatal urine, parental and neonatal hair, meconium, and breast milk. Although symptoms progressively disappeared at 84 hours of age, irritability was still occasionally present at discharge (24 days of age).
Oncologic ...Orally, the prolonged use of yerba mate or use of yerba mate in high doses (typically more than 1-2 liters daily) is associated with an increased risk of cancer, including mouth, esophageal, laryngeal, kidney, bladder, cervical, prostate, and lung cancer (1528,1529,1530,1531,11863,11864,92150,86595,86614,86700,86701). The effect seems to be cumulative and dose dependent. The risk of cancer with yerba mate use seems to increase if it is taken as a warm beverage. In 1991, the International Agency for Research on Cancer (IARC), reported that hot yerba mate drinking is a 2A agent, meaning it is probably carcinogenic for humans (92150). A statement published in 2016 stated there is no conclusive evidence for carcinogenicity when yerba mate is consumed at temperatures that are "not very hot" (95015). Drinking very hot beverages is believed to be a probable cause of esophageal cancer in humans (95015). Concomitant tobacco and alcohol use can increase risk 7-fold (11863).
Pulmonary/Respiratory ...Yerba mate contains caffeine. Orally, caffeine may cause tachypnea-induced respiratory alkalosis (11832,11838,13735). Some researchers think that stopping regular use of caffeine may cause withdrawal symptoms such as runny nose. However, this symptom may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Renal ...Yerba mate contains caffeine. Orally, caffeine may cause diuresis (11832,11838,13735).