Ingredients | Amount Per Serving |
---|---|
20 mcg | |
(Ca)
(Calcium Citrate)
|
56 mg |
(Mg)
(Magnesium Citrate)
|
56 mg |
(Zn)
(Zinc Citrate)
|
2 mg |
(C8:0)
|
300 mg |
(bulb)
|
100 mg |
100 mg | |
(bark)
(in a base of)
|
|
(pulp)
(in a base of)
|
|
Enzyme Blend
(in a base of)
|
|
(in a base of)
|
|
(root)
(in a base of)
|
|
(root)
((in a base of) (4:1))
|
Gelatin, Vegetable Cellulose, Vegetable Magnesium Stearate, L-Ascorbic Acid, Silica
Below is general information about the effectiveness of the known ingredients contained in the product Caprylic Acid Complex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Caprylic Acid Complex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Biotin has been safely used in doses up to 300 mg daily for up to 6 months. A tolerable upper intake level (UL) has not been established (1900,6243,95662,102965). ...when applied topically as cosmetic products at concentrations of 0.0001% to 0.6% biotin (19344).
POSSIBLY SAFE ...when used intramuscularly and appropriately (8468,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at adequate intake doses of 5-25 mcg daily for up to 6 months (173,6243,19347,19348,111365). A tolerable upper intake level (UL) has not been established.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at the adequate intake (AI) dose of 30 mcg daily during pregnancy and 35 mcg daily during lactation. It has also been used in supplemental doses of up to 300 mcg daily (6243,7878). A tolerable upper intake level (UL) has not been established.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Caprylic acid has Generally Recognized as Safe (GRAS) status in the US (19507).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Caprylic acid has been safely used in clinical research at a daily dose of 16 mg/kg for 20 days (97662,100176).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. Garlic has been used safely in clinical studies lasting up to 7 years without reports of significant toxicity (1873,4782,4783,4784,4785,4786,4787,4789,4790,4797)(4798,6457,6897,14447,96008,96009,96014,102016,102670,103479)(107238,107239,107352,108607,110722,111763,114892).
POSSIBLY SAFE ...when used topically. Garlic-containing gels, lipid-soluble garlic extracts, garlic pastes, and garlic mouthwashes have been safely used in clinical research for up to 3 months (4766,4767,8019,15030,51330,51386). ...when used intravaginally. A vaginal cream containing garlic and thyme has been safely used nightly for 7 nights (88387).
POSSIBLY UNSAFE ...when raw garlic is used topically (585). Raw garlic might cause severe skin irritation when applied topically.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (3319).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Garlic is reported to have abortifacient activity (11020). One study also suggests that garlic constituents are distributed to the amniotic fluid after a single dose of garlic (4828). However, there are no published reports of garlic adversely affecting pregnancy. In clinical research, garlic 800 mg daily was used during the third trimester of pregnancy with no reported adverse outcomes (9201,51626). There is insufficient reliable information available about the safety of topical garlic during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (3319).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts greater than those found in foods.
Several small studies suggest that garlic constituents are secreted in breast milk, and that nursing infants of mothers consuming garlic are prone to extended nursing (3319,4829,4830). There is insufficient reliable information available about the safety of topical garlic during lactation.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately for up to 8 weeks.
Garlic extract 300 mg three times daily has been used with apparent safety for up 8 weeks in children ages 8-18 years (4796). There is insufficient reliable information available about the safety of garlic when used over longer durations or in higher doses.
CHILDREN: POSSIBLY UNSAFE
when raw garlic is used topically.
Raw garlic might cause severe skin irritation when applied topically (585,51210).
POSSIBLY SAFE ...when used orally and appropriately as a single dose (260,261). There is insufficient reliable information available about the safety of goldenseal when used as more than a single dose.
CHILDREN: LIKELY UNSAFE
when used orally in newborns.
The berberine constituent of goldenseal can cause kernicterus in newborns, particularly preterm neonates with hyperbilirubinemia (2589).
PREGNANCY: LIKELY UNSAFE
when used orally.
Berberine is thought to cross the placenta and may cause harm to the fetus. Kernicterus has developed in newborn infants exposed to goldenseal (2589).
LACTATION:
LIKELY UNSAFE when used orally.
Berberine and other harmful constituents can be transferred to the infant through breast milk (2589). Use during lactation can cause kernicterus in the newborn and several resulting fatalities have been reported (2589).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapefruit has Generally Recognized as Safe status (GRAS) in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. A grapefruit seed extract has been safely used in clinical research (5866). In addition, capsules containing grapefruit pectin 15 grams daily have been used in clinical research for up to 16 weeks (2216).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Preliminary population research shows that consuming a quarter or more of a whole grapefruit daily is associated with a 25% to 30% increased risk of postmenopausal breast cancer (14858). Grapefruit juice is thought to reduce estrogen metabolism resulting in increased endogenous estrogen levels. More evidence is needed to validate this finding.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of using medicinal amounts of grapefruit during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Papain has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short-term. Papain has been used in combination with other proteolytic enzymes at a dose of up to 1200 mg daily for up to 9 weeks (964,965,968,67831,67834). ...when used topically as a diluted solution in appropriate doses for up to 20 minutes (67835,67843,67845).
POSSIBLY UNSAFE ...when used orally in large amounts. In excessive doses, papain can cause significant side effects including esophageal perforation (6). ...when raw papain is used topically. Raw papain or papaya latex is a severe irritant and vesicant (6).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is some concern that crude papain is teratogenic and embryotoxic (6).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY UNSAFE ...when used orally. The safety of pau d'arco in typical doses is unclear. Serious toxicities have been found with high doses of the lapachol constituent (91939). In patients with cancer, doses of lapachol above 1.5 grams daily were associated with significant gastrointestinal toxicities and an increased risk of bleeding (91939). However, in patients with dysmenorrhea, doses of pau d'arco 1050 mg plus rutin 75 mg daily for up to 8 weeks did not lead to serious adverse effects (114012). There is insufficient reliable information available about the safety of pau d'arco when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally in typical doses.
Animal studies have found that lapachol, a constituent of pau d'arco, has teratogenic and abortifacient effects (68314,68315); avoid using. There is insufficient reliable information available about the safety of pau d'arco when used topically in pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Pectin has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in amounts greater than those typically found in food. Pectin 4.8 grams three times daily has been used for up to one year without serious adverse effects (12547,15019,15020,92481,108525).
CHILDREN: POSSIBLY SAFE
when used orally in amounts greater than those found in food, short-term.
Pectin 4 grams/kg has been used daily for up to 7 days without reports of serious adverse effects (12575,19705).
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods.
Pectin has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally in medicinal amounts (12577).
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product Caprylic Acid Complex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, caprylic acid might increase the risk of hypotension when used with antihypertensive drugs.
Animal research suggests that caprylic acid might have positive inotropic effects, resulting in reduced arterial pressure and vascular resistance and increased cardiac output (25805).
|
Theoretically, caprylic acid might increase plasma concentrations of NSAIDs.
|
Theoretically, caprylic acid might increase plasma concentrations of warfarin.
In vitro research suggests that high doses of caprylic acid might displace warfarin from albumin binding sites (25807). This effect has not been reported in humans.
|
Garlic may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking garlic with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking garlic with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, garlic might decrease levels and effects of atazanavir.
In a case report, a patient consuming six stir-fried garlic cloves three times weekly developed suboptimal atazanavir levels and increases in HIV viral load. While the exact cause of this interaction is unclear, there is speculation that garlic might decrease the intestinal absorption of atazanavir or increase its metabolism by inducing cytochrome P450 3A4 (CYP3A4) (88388). Until more is known, advise patients not to consume large amounts of garlic while taking atazanavir.
|
Garlic might increase levels of drugs metabolized by CYP2E1.
Clinical research suggests garlic oil can inhibit the activity of CYP2E1 by 39% (10847). Use garlic oil cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, garlic products containing allicin might induce intestinal CYP3A4 and inhibit hepatic CYP3A4. This may increase or decrease levels of drugs metabolized by CYP3A4.
Some human research suggests that garlic may induce INTESTINAL CYP3A4, reducing levels of drugs metabolized by this enzyme. This is primarily based on a study showing that taking a specific allicin-containing garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces saquinavir levels by approximately 50%. It is speculated that the allicin constituent induced CYP3A4 in the gut mucosa (7027,93578). Another study shows that giving docetaxel intravenously, bypassing the CYP3A4 enzymes in the gut mucosa, along with the same specific garlic product for 12 consecutive days, does not affect docetaxel levels (17221). Conversely, there is concern that garlic may inhibit HEPATIC CYP3A4. In a single case report, increased tacrolimus levels and liver injury occurred in a liver transplant patient after taking a specific garlic supplement (Garlicin Cardio, Nature's Way) at up to three times the manufacturer recommended dose for 7 days (96010). Several other studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506).
|
Theoretically, garlic might decrease levels of isoniazid.
Animal research suggests that an aqueous extract of garlic reduces isoniazid levels by about 65%. Garlic reduced the maximum concentration (Cmax) and area under the curve (AUC), but not the half-life, of isoniazid. This suggests that garlic extract might inhibit isoniazid absorption across the intestinal mucosa (15031); however, the exact mechanism of this potential interaction is not known.
|
Theoretically, garlic products containing allicin might decrease levels of PIs.
Protease inhibitors are metabolized by cytochrome P450 3A4 (CYP3A4) isoenzymes. There is concern that garlic products containing allicin might induce intestinal CYP3A4, reducing plasma levels of protease inhibitors. This is primarily based on a study showing that taking a specific garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces levels of saquinavir, a PI, by approximately 50%. It is speculated that the allicin constituent induce CYP3A4 in the gut mucosa (7027,93578). Several studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506).
|
Theoretically, garlic containing allicin might decrease levels of saquinavir.
Saquinavir is a substrate of cytochrome P450 3A4 (CYP3A4) isoenzymes. There is concern that garlic products containing allicin might induce intestinal CYP3A4 and cause subtherapeutic levels of saquinavir. This is primarily based on a pharmacokinetic study showing that taking a specific garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces saquinavir levels by approximately 50%. It is speculated that the allicin constituent induces CYP3A4 in the gut mucosa (7027,93578). Several pharmacokinetic studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506). Until more is known about this potential interaction, use garlic containing allicin cautiously in patients taking saquinavir.
|
Theoretically, taking garlic with sofosbuvir might decrease its effectiveness.
Animal research in rats shows that giving aged garlic extract 120 mg/kg orally daily for 14 days decreases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 36%, increases the clearance by 63%, and decreases the plasma concentrations at 1 and 8 hours by 35% and 58%, respectively. This interaction is hypothesized to be due to induction of intestinal P-glycoprotein expression by garlic (109524).
|
Theoretically, garlic might increase levels of tacrolimus.
In one case report, a liver transplant patient taking tacrolimus experienced increased tacrolimus levels and liver injury after taking a specific garlic supplement (Garlicin Cardio, Nature's Way) at up to three times the manufacturer recommended dose for 7 days. It is speculated that garlic inhibited hepatic cytochrome P450 3A4 (CYP3A4), which increased plasma levels of tacrolimus (96010).
|
Theoretically, garlic might increase the risk of bleeding with warfarin.
Raw garlic and a variety of garlic extracts have antiplatelet activity and can increase prothrombin time (586,616,1874,3234,4366,4802,4803,51397). In addition, there is a report of two patients who experienced an increase in a previously stabilized international normalized ratio (INR) with concomitant garlic and warfarin use (51228,51631). However, this report has been subsequently debated due to limited clinical information. Other clinical studies have not identified an effect of garlic on INR, warfarin pharmacokinetics, or bleeding risk (15032,16416). More evidence is needed to determine the safety of using garlic with warfarin.
|
Theoretically, goldenseal might increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
|
Theoretically, goldenseal might increase the risk of hypoglycemia when used with antidiabetes drugs.
|
Theoretically, goldenseal might increase the risk of hypotension when taken with antihypertensive drugs.
Goldenseal contains berberine. Animal research shows that berberine can have hypotensive effects (33692,34308). Also, an analysis of clinical research shows that taking berberine in combination with amlodipine can lower systolic and diastolic blood pressure when compared with amlodipine alone (91956). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might increase the sedative effects of CNS depressants.
|
Theoretically, goldenseal might increase serum levels of drugs metabolized by CYP2C9.
In vitro research shows that goldenseal root extract can modestly inhibit CYP2C9. This effect may be due to its alkaloid constituents, hydrastine and berberine (21117). However, this effect has not been reported in humans.
|
Goldenseal might increase serum levels of drugs metabolized by CYP2D6.
|
Theoretically, goldenseal might increase serum levels of drugs metabolized by CYP2E1.
In vitro research shows that goldenseal root extract can inhibit the activity of CYP2E1 (94140). However, this effect has not been reported in humans.
|
Goldenseal might increase serum levels of drugs metabolized by CYP3A4.
Most clinical and in vitro research shows that goldenseal inhibits CYP3A4 enzyme activity and increases serum levels of CYP3A4 substrates, such as midazolam (6450,13536,21117,91740,111725). However, in one small clinical study, goldenseal did not affect the levels of indinavir, a CYP3A4 substrate, in healthy volunteers (10690,93578). This is likely due to the fact that indinavir has a high oral bioavailability, making it an inadequate probe for CYP3A4 interactions (13536,91740) and/or that it is primarily metabolized by hepatic CYP3A, while goldenseal has more potential to inhibit intestinal CYP3A enzyme activity (111725). Both goldenseal extract and its isolated constituents berberine and hydrastine inhibit CYP3A, with hydrastine possibly having more inhibitory potential than berberine (111725).
|
Theoretically, goldenseal might increase serum levels of dextromethorphan.
Goldenseal contains berberine. A small clinical study shows that berberine can inhibit cytochrome P450 2D6 (CYP2D6) activity and reduce the metabolism of dextromethorphan (34279).
|
Goldenseal might increase serum levels of digoxin, although this effect is unlikely to be clinically significant.
Clinical research shows that goldenseal modestly increases digoxin peak levels by about 14% in healthy volunteers. However, goldenseal does not seem to affect other pharmacokinetic parameters such as area under the curve (AUC) (15132). This suggests that goldenseal does not cause a clinically significant interaction with digoxin. Digoxin is a P-glycoprotein substrate. Some evidence suggests that goldenseal constituents might affect P-glycoprotein; however, it is unclear whether these constituents inhibit or induce P-glycoprotein.
|
Theoretically, goldenseal might decrease the conversion of losartan to its active form.
Goldenseal contains berberine. A small clinical study shows that berberine inhibits cytochrome P450 2C9 (CYP2C9) activity and reduces the metabolism of losartan (34279). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might reduce blood levels of metformin.
In vitro research shows that goldenseal extract decreases the bioavailability of metformin, likely by interfering with transport, intestinal permeability, or other processes involved in metformin absorption. It is unclear which, if any, of metformin's transporters are inhibited by goldenseal. Goldenseal does not appear to alter the clearance or half-life of metformin (105764).
|
Theoretically, goldenseal might reduce the therapeutic effects of oseltamivir by decreasing its conversion to its active form.
In vitro evidence suggests that goldenseal reduces the formation of the active compound from the prodrug oseltamivir (105765). The mechanism of action and clinical relevance is unclear.
|
Theoretically, goldenseal might increase or decrease serum levels of P-glycoprotein (P-gp) substrates.
There is conflicting evidence about the effect of goldenseal on P-gp. In vitro research suggests that berberine, a constituent of goldenseal, modestly inhibits P-gp efflux. Other evidence suggests that berberine induces P-gp. In healthy volunteers, goldenseal modestly increases peak levels of the P-gp substrate digoxin by about 14%. However, it does not seem to affect other pharmacokinetic parameters such as area under the curve (AUC) (15132). This suggests that goldenseal is not a potent inhibitor of P-gp-mediated drug efflux. Until more is known, goldenseal should be used cautiously with P-gp substrates.
|
Theoretically, goldenseal might increase the sedative effects of pentobarbital.
Animal research shows that berberine, a constituent of goldenseal, can prolong pentobarbital-induced sleeping time (13519). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might increase serum levels of tacrolimus.
Goldenseal contains berberine. In a 16-year-old patient with idiopathic nephrotic syndrome who was being treated with tacrolimus 6.5 mg twice daily, intake of berberine 200 mg three times daily increased the blood concentration of tacrolimus from 8 to 22 ng/mL. Following a reduction of tacrolimus dosing to 3 mg daily, blood levels of tacrolimus decreased to 12 ng/mL (91954).
|
Grapefruit juice can decrease blood levels of acebutolol, potentially decreasing the clinical effects of acebutolol.
Clinical research shows that grapefruit juice can modestly decrease acebutolol levels by 7% and reduce peak plasma concentration by 19% by inhibiting organic anion transporting polypeptide (OATP) (17603,18101). The acebutolol half-life is also extended by 1.1 hours when grapefruit juice is consumed concomitantly (18101). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of aliskiren, potentially decreasing the clinical effects of aliskiren.
Clinical research shows that grapefruit juice can decrease aliskiren levels by approximately 60% by inhibiting organic anion transporting polypeptide (OATP) (91428). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of amiodarone, potentially increasing the effects and adverse effects of amiodarone.
|
Grapefruit juice might decrease blood levels of amprenavir, although this is not likely to be clinically significant.
Some clinical research shows that grapefruit juice can slightly decrease amprenavir levels (17673); however, this is probably not clinically significant.
|
Grapefruit juice can increase blood levels of oral artemether, potentially increasing the effects and adverse effects of artemether.
|
Grapefruit juice might increase blood levels of some oral benzodiazepines, potentially increasing the effects and adverse effects of these drugs.
Clinical research shows that grapefruit juice can increase plasma triazolam concentrations. Repeated consumption of grapefruit juice greatly increases triazolam concentrations and prolongs the half-life, probably due to inhibition of cytochrome P450 3A4 (CYP3A4) (7776,22118,22131,22133). Some studies show that grapefruit juice, particularly when taken in large quantities, reduces the clearance and increases the maximum blood levels, area under the plasma concentration curve (AUC), and duration of effect of midazolam. However, there is no effect on intravenous midazolam (4300,10159,11275,17601,22117,22119,16711,91427,95978). Grapefruit juice has also been shown to increase the maximum blood levels and duration of effect of diazepam, but the clinical significance of this is not known (3228). This interaction does not appear to occur with alprazolam (17674).
|
Grapefruit juice can increase blood levels of blonanserin, potentially increasing the effects and adverse effects of blonanserin.
Blonanserin is metabolized primarily by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral blonanserin increases exposure to blonanserin almost 6-fold due to inhibition of intestinal CYP3A4 by grapefruit juice and prolongs the elimination half-life of blonanserin by 2.2-fold due to inhibition of hepatic CYP3A4 by grapefruit juice (96943).
|
Grapefruit juice can increase blood levels of budesonide, potentially increasing the effects and adverse effects of budesonide.
Budesonide is metabolized by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral budesonide increases the plasma concentration of budesonide. This effect is attributed to grapefruit-induced inhibition of CYP3A4 in both the colon and small intestine (91425).
|
Grapefruit juice can increase blood levels of buspirone, potentially increasing the effects and adverse effects of buspirone.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of buspirone (3771).
|
Grapefruit juice can decrease the clearance of caffeine, potentially increasing the effects and adverse effects of caffeine.
Clinical research shows that grapefruit juice decreases caffeine clearance (4300).
|
Grapefruit juice can increase blood levels of oral calcium channel blockers, potentially increasing the effects and adverse effects of these drugs.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of amlodipine (523), nifedipine (528,22114), nisoldipine (529), verapamil (7779,8285), felodipine, nimodipine, nicardipine, diltiazem, pranidipine, nitrendipine, and manidipine (524,528,1388,4300,7780,11276,22136,53338,22138,22139) (22140,22141,22142,22143,22147,22148,22149,53367,22158),
This interaction is likely the result of the inhibition of intestinal metabolism of these drugs by CYP3A4 (7779,7780), although some research suggests grapefruit may alter plasma drug levels by reducing the rate of gastric emptying (22167). Consuming grapefruit juice 1 liter daily increases steady state concentrations of verapamil by as much as 50% (8285). However, some references dispute the clinical relevance of the interactions with amlodipine, diltiazem, and verapamil (3230,4300,22159). Other research in healthy individuals suggests plasma levels of felodipine and nifedipine are not affected when given intravenously (22144,22146). There is considerable interindividual variability in the effect of grapefruit juice on drug metabolism, which might account for inconsistent study results (7777,7779,8285). In healthy older adults, the hemodynamic response to felodipine plus grapefruit juice might be influenced by altered autonomic regulation. In older healthy adults, a single dose of grapefruit juice and felodipine enhanced the blood pressure-lowering effects of felodipine. However, after a week of grapefruit juice and felodipine (steady state), the hypotensive activity was reduced, possibly due to compensatory tachycardia (1392). Research indicates it is necessary to withhold grapefruit juice for as long as 3 days to avoid interactions with felodipine and nisoldipine (5068,5069,6453,22145).
|
Grapefruit juice can increase blood levels of carbamazepine, potentially increasing the effects and adverse effects of carbamazepine.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of carbamazepine (524).
|
Grapefruit juice can increase blood levels of carvedilol, potentially increasing the effects and adverse effects of carvedilol.
Clinical research shows that grapefruit juice increases the bioavailability of a single dose of carvedilol by 16% (5071).
|
Grapefruit juice can decrease blood levels of celiprolol, potentially decreasing the clinical effects of celiprolol.
In human research, taking grapefruit juice within two hours of celiprolol appears to decrease absorption and blood levels of celiprolol by approximately 85% (91421). This interaction is due to grapefruit-induced inhibition of organic anion transporting polypeptide (OATP) (17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of cisapride, potentially increasing the effects and adverse effects of cisapride.
|
Theoretically, grapefruit juice might increase blood levels of clomipramine, potentially increasing the effects and adverse effects of clomipramine.
Case reports have shown that clomipramine trough levels increase significantly after the addition of grapefruit juice to the therapeutic regimen (5064).
|
Grapefruit juice can decrease blood levels of the active metabolite of clopidogrel, thereby decreasing the antiplatelet effect of clopidogrel.
Clopidogrel is an antiplatelet prodrug that is metabolized primarily by cytochrome P450 2C19 (CYP2C19) to form the active metabolite. A small clinical study shows that taking grapefruit juice with clopidogrel decreases plasma levels of the active metabolite by more than 80% and impairs the antiplatelet effect of clopidogrel. This effect is possibly due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase blood levels of colchicine, potentially increasing the effects and adverse effects of colchicine.
Colchicine is an alkaloid that undergoes P-glycoprotein (P-gp) mediated drug efflux in the intestines, followed by metabolism by cytochrome P450 3A4 (CYP3A4). There is concern that grapefruit juice will increase the effects and adverse effects of colchicine due to grapefruit-induced inhibition of P-gp and/or CYP3A4. In vitro evidence shows that grapefruit juice increases absorption of colchicine by inhibiting P-gp (94158). A case of acute colchicine toxicity has been reported for an 8-year-old female who drank grapefruit juice while taking high-dose colchicine, long-term (94157). However, one small clinical study in healthy adults shows that drinking grapefruit juice 240 mL twice daily for 4 days does not affect the bioavailability or adverse effects of a single dose of colchicine 0.6 mg taken on the fourth day (35762).
|
Grapefruit juice can increase blood levels of oral cyclosporine, potentially increasing the effects and adverse effects of cyclosporine.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP1A2.
In vitro research suggests that grapefruit juice might inhibit CYP1A2 enzymes (12479). So far, this interaction has not been reported in humans.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C19.
In vitro research suggests that grapefruit juice might inhibit CYP2C19 enzymes (12479). Also, a small clinical study shows that taking grapefruit juice with clopidogrel, an antiplatelet prodrug that is metabolized primarily by CYP2C19, decreases plasma levels of the active metabolite and impairs the antiplatelet effect of clopidogrel. This effect is likely due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C9.
In vitro research suggests that grapefruit juice might inhibit CYP2C9 enzymes (12479). So far, this interaction has not been reported in humans.
|
Grapefruit juice can increase levels of drugs metabolized by CYP3A4.
Clinical research shows that grapefruit juice can inhibit CYP3A4 metabolism of drugs, causing increased drug levels and potentially increasing the risk of adverse effects (3227,3774,8283,8285,8286,22129,91427,104190). When taken orally, effects of grapefruit juice on CYP3A4 levels appear to last at least 48 hours (91427). Grapefruit's ability to inhibit CYP3A4 has even been harnessed to intentionally increase levels of venetoclax, which is metabolized by CYP3A4, in an elderly patient with acute myeloid leukemia who could not afford full dose venetoclax. The lower dose of venetoclax in combination with grapefruit juice resulted in serum levels of venetoclax in the therapeutic reference range of full dose venetoclax and positive treatment outcomes for the patient (112287).
Professional consensus recommends the consideration of patient age, existing medical conditions, additional medications, and the potential for additive adverse effects when evaluating the risks of concomitant use of grapefruit juice with any medication metabolized by CYP3A4. While all patients are at risk for interactions with grapefruit juice consumption, patients older than 70 years of age and those taking multiple medications are at the greatest risk for a serious or fatal interaction with grapefruit juice (95970,95972). |
Grapefruit juice can increase blood levels of dapoxetine, potentially increasing the effects and adverse effects of dapoxetine.
Pharmacokinetic research shows that drinking grapefruit juice 250 mL prior to taking dapoxetine 60 mg can increase the maximum plasma concentration of dapoxetine by 80% and prolong the elimination half-life by 43%. This effect is attributed to the inhibition of both intestinal and hepatic cytochrome P450 3A4 (CYP3A4) by grapefruit (95975).
|
Grapefruit juice can increase blood levels of dextromethorphan, potentially increasing the effects and adverse effects of dextromethorphan.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism, causing increased dextromethorphan levels (11362).
|
Theoretically, grapefruit juice may increase the levels and clinical effects of empagliflozin.
Animal research suggests grapefruit juice increases the peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of empagliflozin, possibly due to inhibition of metabolism by uridine diphosphoglucuronosyl transferase (UGT) (115467). This effect has not been reported in humans.
|
Grapefruit juice can increase blood levels of erythromycin, potentially increasing the effects and adverse effects of erythromycin.
Clinical research shows that concomitant use of erythromycin with grapefruit can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of erythromycin, increasing plasma concentrations of erythromycin by 35% (8286).
|
Grapefruit juice can increase blood levels of estrogens, potentially increasing the effects and adverse effects of estrogens.
Clinical research shows that grapefruit increases the levels of endogenous and exogenous estrogens by inhibiting cytochrome P450 3A4 (CYP3A4) enzymes (525,526,14858). Grapefruit juice increases exogenously administered 17-beta-estradiol by about 20% in females without ovaries and ethinyl-estradiol in healthy females (525,526,22160).
|
Grapefruit juice can decrease blood levels of etoposide, potentially decreasing the clinical effects of etoposide.
Clinical research shows that grapefruit juice decreases the absorption and plasma concentrations of etoposide. There is some evidence that grapefruit juice co-administered with oral etoposide can reduce levels of etoposide by about 26% (8744). Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of fexofenadine, thereby decreasing the clinical effects of fexofenadine.
Clinical research shows that grapefruit juice can significantly decrease oral absorption and blood levels of fexofenadine. In one study, consuming a drink containing grapefruit juice 25% decreased bioavailability of fexofenadine by about 24%. Consuming a full-strength grapefruit juice drink reduced bioavailability by 67% (7046). In another study, consuming grapefruit juice 300 mL decreased fexofenadine levels by 42%. Consuming 1200 mL of grapefruit juice reduced levels by 64% (17602). Similarly, drinking grapefruit juice 240 mL decreased the oral bioavailability of fexofenadine by 25% in another pharmacokinetic study (112288). Fexofenadine manufacturer data indicates that concomitant administration of grapefruit juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that grapefruit also reduces the clinical response to fexofenadine (17603).
Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604). |
Grapefruit juice can increase blood levels of fluvoxamine, potentially increasing the effects and adverse effects of fluvoxamine.
Clinical research shows that grapefruit juice inhibits metabolism and increases fluvoxamine levels and peak concentration (17675).
|
Grapefruit juice can increase blood levels of halofantrine, potentially increasing the effects and adverse effects of halofantrine.
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism, which increases halofantrine levels and peak concentration, as well as a marker of ventricular tachyarrhythmia potential (22129).
|
Grapefruit juice can increase blood levels of statins that are metabolized by cytochrome P450 3A4 (CYP3A4), potentially increasing the effects and adverse effects of these statins. Additionally, grapefruit juice might interfere with the bioavailability of statins that are substrates of organic anion transporting polypeptides (OATP).
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption and plasma concentrations of statins that are metabolized by CYP3A4. These include lovastatin (527,11274), simvastatin (3774,7782,22127), and atorvastatin (3227,12179,22126). Keep in mind that there is considerable variability in the effect of grapefruit juice on drug metabolism, so individual patient response is difficult to predict (7777,7781).
Some statins, including pravastatin, fluvastatin, pitavastatin, and rosuvastatin, are not metabolized by CYP3A4. However, grapefruit juice might still affect the bioavailability of these statins. These statins are substrates of OATP. Grapefruit juice can inhibit OATP. Therefore, grapefruit juice may reduce the bioavailability or increase drug levels of these statins depending on the type of OATP. However, grapefruit juice affects OATP for only a short time. Therefore, separating drug administration by at least 4 hours is likely to avoid this interaction (3227,12179,17601,22126,91420). |
Grapefruit juice can interfere with itraconazole absorption, although the clinical significance of this interaction is unclear.
|
Grapefruit juice can decrease blood levels of levothyroxine, potentially decreasing the effectiveness of levothyroxine.
Clinical research shows that grapefruit juice modestly decreases levothyroxine levels by 11% by inhibiting organic anion transporting polypeptide (OATP) (17604,22163). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of the active metabolite of losartan, potentially decreasing the clinical effects of losartan.
Losartan is an inactive prodrug which must be metabolized to its active form, E-3174, to be effective. In one human study, grapefruit juice reduced losartan metabolism, increased losartan AUC, and reduced the AUC of the major active losartan metabolite, E-3174 (1391).
|
Grapefruit juice can increase blood levels of methadone, potentially increasing the effects and adverse effects of methadone.
Clinical research shows that grapefruit juice inhibits the metabolism of methadone, increasing methadone levels and peak concentrations (17676). In one case, a 51-year-old male taking methadone 90 mg daily and no other medications was found unresponsive. The patient reported drinking grapefruit juice 500 mL daily for 3 days prior to the event. Methadone is a substrate of cytochrome P450 3A4 (CYP3A4), and grapefruit juice-induced inhibition of CYP3A4 is the likely cause of this interaction (102056).
|
Grapefruit juice can increase blood levels of methylprednisolone, potentially increasing the effects and adverse effects of methylprednisolone.
Clinical research shows that grapefruit juice can increase the plasma concentration of orally administered methylprednisolone. Grapefruit juice 200 mL three times daily given with methylprednisolone 16 mg increased methylprednisolone half-life by 35%, peak plasma concentration by 27%, and total area under the curve by 75% (3123).
|
Grapefruit juice might decrease blood levels of nadolol, potentially decreasing the clinical effects of nadolol.
Nadolol is a substrate of organic anion transporting polypeptide 1A2 (OATP1A2) (17603,17604,22161). Some research shows that grapefruit juice and its constituent naringin can inhibit organic anion transporting polypeptides (OATP), which can reduce the bioavailability of OATP substrates (17603,17604,22161,91427). However, preliminary clinical research shows that grapefruit juice containing a low amount of naringin does not significantly affect levels of nadolol (91422). It is not known if grapefruit juice containing higher amounts of naringin reduces the bioavailability of nadolol.
|
Grapefruit juice can increase blood levels of nilotinib, potentially increasing the effects and adverse effects of nilotinib.
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption of nilotinib. Grapefruit juice increases nilotinib levels by 29% and peak concentration by 60% (17677).
|
Grapefruit juice can decrease levels of drugs that are substrates of OATP.
In vitro and clinical research show that consuming grapefruit juice inhibits OATP, which reduces the bioavailability of oral drugs that are substrates of OATP. Various clinical studies have shown reduced absorption of OATP substrates when taken with grapefruit, including fexofenadine, acebutolol, aliskiren, celiprolol, levothyroxine, nadolol, and pitavastatin (17603,17604,18101,22126,22134,22161,22163,91420,91427,91428,112288). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of oxycodone, potentially increasing the effects and adverse effects of oxycodone.
Oxycodone is metabolized by both cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6). A small clinical study shows that grapefruit juice can increase plasma levels of oral oxycodone about 1.7-fold by inhibiting CYP3A4. While the analgesic effects of oxycodone do not seem to be affected, taking grapefruit juice along with oxycodone may theoretically increase the adverse effects of oxycodone (91423).
|
Grapefruit juice does not seem to affect renal P-glycoprotein (P-gp). Theoretically, it might inhibit intestinal P-gp, but evidence is conflicting.
While most in vitro research shows that grapefruit products inhibit P-gp, (1390,11270,11278,11362,95976), research in humans is less clear. Two small clinical studies in healthy adults using digoxin as a probe substrate show that grapefruit juice does not inhibit P-gp in the kidneys (11277,11282). It is unclear whether this applies to intestinal P-gp, for which digoxin is not considered to be a sensitive probe (105568). Grapefruit juice has been shown to reduce levels of fexofenadine (7046,17602,112288), and increase levels of quinidine (5067,22121). However, as both of these drugs are also substrates of other enzymes and transporters, it is unclear what role, if any, intestinal P-gp has in these findings.
|
Grapefruit juice can increase blood levels of pitavastatin, potentially increasing the effects and adverse effects of pitavastatin.
Pharmacokinetic research shows that taking grapefruit juice with pitavastatin 2-4 mg can increase blood levels of pitavastatin by 13% to 14%. Unlike simvastatin and atorvastatin, pitavastatin is not significantly metabolized by cytochrome P450 3A4 (CYP3A4) enzymes. Grapefruit juice appears to increase levels of pitavastatin by inhibiting its uptake by organic anion transporting polypeptide 1B1 (OATP1B1) into hepatocytes for metabolism and clearance from the body (22126,91420). Grapefruit juice seems to increase levels of pitavastatin to a greater degree in patients homozygous for a specific polymorphism (388A>G) in the OATP1B1 gene compared to those heterozygous for this polymorphism (91420).
|
Grapefruit juice can decrease blood levels of the active metabolite of prasugrel, thereby decreasing the antiplatelet effect of prasugrel.
Prasugrel is a prodrug that is metabolized by cytochrome P450 3A4 (CYP3A4) into its active metabolite. A small pharmacokinetic study in healthy volunteers shows that drinking grapefruit juice 200 mL three times daily for 4 days and taking a single dose of prasugrel 10 mg with an additional 200 mL of grapefruit juice on day 3, results in a 49% lower peak plasma level and a 26% lower overall plasma exposure to the active metabolite when compared with drinking water. However, despite the reduced exposure, platelet aggregation seems to be reduced by an average of only 5% (105567). The clinical significance of this interaction is unclear.
|
Grapefruit juice can increase blood levels of praziquantel, potentially increasing the effects and adverse effects of praziquantel.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of praziquantel. Plasma concentrations of praziquantel can increase by as much as 160% when administered with 250 mL of commercially available grapefruit juice (8282).
|
Grapefruit juice may increase blood levels of primaquine, potentially increasing the effects and adverse effects of primaquine.
Clinical research shows that grapefruit juice increases the bioavailability of primaquine by approximately 20% (22130). The clinical significance of this interaction is not clear.
|
Grapefruit or grapefruit juice, especially if consumed in large amounts, can cause additive QT interval prolongation when taken with QT interval-prolonging drugs, potentially increasing the risk of ventricular arrhythmias.
Clinical research in healthy volunteers shows that drinking 6 liters of grapefruit juice over 6 hours prolonged the QTc by a peak amount of 14 milliseconds (ms). This prolongation was similar to the QT prolongation caused by the drug moxifloxacin. In individuals with long QT syndrome, a smaller dose of grapefruit juice, 1.5 liters, resulted in a greater peak QTc prolongation of about 30 ms (100249). The effect of smaller quantities of grapefruit juice on the QT interval is unclear.
|
Grapefruit juice may increase blood levels of quetiapine, increasing the effects and adverse effects of quetiapine.
Quetiapine is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4 (3227,3774,8283,8285,8286,22129,91427,104190). In one case report, a healthy 28-year-old female with bipolar disorder stabilized on quetiapine 800 mg daily presented with quetiapine toxicity considered to be related to consuming a gallon of grapefruit juice over the past 24 hours (108848).
|
Grapefruit juice can alter blood levels of quinidine, potentially increasing or decreasing the clinical effects of quinidine.
|
Theoretically, grapefruit juice may increase the concentration and clinical effects of rivaroxaban.
Rivaroxaban is metabolized partially by cytochrome P450 3A4 (CYP3A4). Grapefruit juice can inhibit CYP3A4. Animal research shows that grapefruit juice increases the peak plasma concentration (Cmax) of rivaroxaban by about four-fold, without increasing the area under the drug concentration-time curve (AUC) (115468).
|
Grapefruit juice can increase blood levels of saquinavir, potentially increasing the effects and adverse effects of saquinavir.
|
Grapefruit juice can increase blood levels of scopolamine, potentially increasing the effects and adverse effects of scopolamine.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of scopolamine, increasing its absorption and plasma concentrations. Oral bioavailability of scopolamine can increase by 30% when administered with 150 mL of grapefruit juice (8284).
|
Grapefruit juice can increase blood levels of sertraline, potentially increasing the effects and adverse effects of sertraline.
Clinical research shows that grapefruit juice inhibits the cytochrome P450 3A4 (CYP3A4) metabolism of sertraline, increasing blood levels of sertraline (22122).
|
Grapefruit juice can increase blood levels of sildenafil, potentially increasing the effects and adverse effects of sildenafil.
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism of sildenafil, increasing its absorption and plasma concentrations. Oral bioavailability of sildenafil can increase by 23% when administered with 500 mL of commercially available grapefruit juice (8283).
|
Grapefruit juice may slightly increase blood levels of sunitinib, potentially increasing the effects and adverse effects of sunitinib.
Sunitinib is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit and grapefruit juice can inhibit CYP3A4 and increase levels of some drugs metabolized by this enzyme. One small clinical study shows that drinking 200 mL of grapefruit juice three times daily can increase the bioavailability of sunitinib by 11% (91429). While this effect is unlikely to be clinically significant, patients should use caution when using grapefruit along with sunitinib. Dose adjustments may be necessary.
|
Grapefruit juice can increase blood levels of tacrolimus, potentially increasing the effects and adverse effects of tacrolimus.
Clinical research shows that drinking grapefruit juice 200 mL daily while taking tacrolimus 3 mg daily increases the trough blood concentration of tacrolimus by approximately 3-fold in patients with connective tissue diseases (95974). A single case has also reported a 10-fold increase in tacrolimus trough levels after the ingestion of grapefruit juice over 3 days (22122). This effect is attributed to the inhibition of cytochrome P450 3A4 (CYP3A4) by grapefruit (95974).
|
Theoretically, grapefruit juice might increase blood levels of tadalafil, potentially increasing the effects and adverse effects of tadalafil.
Animal research shows that grapefruit juice increases tadalafil serum concentrations and overall exposure, likely through inhibition of cytochrome P450 3A4 enzymes (104189).
|
Grapefruit juice might decrease blood levels of talinolol, potentially decreasing the clinical effects of talinolol.
Clinical research suggests that grapefruit juice reduces talinolol bioavailability, likely by inhibiting intestinal uptake (22135). The clinical significance of this effect is unclear.
|
Grapefruit juice can increase blood levels of terfenadine, potentially increasing the effects and adverse effects of terfenadine.
|
Grapefruit juice can decrease blood levels of theophylline, potentially decreasing the effectiveness of theophylline.
Clinical research shows that grapefruit juice seems to modestly decrease theophylline levels when given concurrently with sustained-release theophylline (11013). The mechanism of this interaction is unknown.
|
Grapefruit juice can increase blood levels of ticagrelor, thereby increasing the effects and adverse effects of ticagrelor.
Ticagrelor is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that taking grapefruit juice with ticagrelor increases blood levels of ticagrelor more than two-fold and increases the antiplatelet activity of ticagrelor (91418). Additionally, animal research shows that grapefruit juice increases peak plasma concentration (Cmax) and the area under the drug concentration-time curve (AUC) of ticagrelor (115468).
|
Grapefruit juice can increase blood levels of tolvaptan, potentially increasing the effects and adverse effects of tolvaptan.
Tolvaptan is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that grapefruit juice can increase the bioavailability and blood levels of tolvaptan by approximately 1.6-fold for up to 16 hours (91426).
|
Theoretically, drinking large amounts of grapefruit juice might increase the effects and adverse effects of warfarin.
In one case report, a patient experienced significantly increased international normalized ratio (INR) associated with consumption of 50 ounces of grapefruit juice daily (12061). However, smaller amounts of grapefruit juice might not be a problem. In a small clinical trial, consumption of 24 ounces of grapefruit juice daily for one week had no effect on INR in males treated with warfarin (12063).
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
|
Theoretically, licorice might reduce the effects of cisplatin.
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that licorice induces CYP1A2 enzymes (111404).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
|
Gabapentin absorption can be decreased by magnesium.
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, papain might increase the effects and side effects of warfarin.
In one case report, a patient previously stable on warfarin was found to have an international normalization ratio (INR) of 7.4, which was attributed to ingestion of a supplement containing papain from papaya extract (613).
|
Theoretically, pau d'arco might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
In vitro research shows that pau d'arco reduces platelet aggregation and may interfere with vitamin K (18057,68319). One clinical study shows that taking the lapachol constituent of pau d'arco in doses above 1.5 grams daily increases the risk of bleeding (91939). The effects of whole pau d'arco or pau d'arco extract in humans are unclear.
|
Theoretically, pectin might reduce the absorption of digoxin, potentially decreasing its effectiveness.
A small clinical study shows that taking digoxin with a kaolin-pectin suspension reduces the absorption of digoxin by about 62% (2212). It is unclear if these effects are due to pectin, kaolin, or the combination.
|
Theoretically, pectin might reduce the absorption of lovastatin, potentially decreasing its effectiveness.
Case reports suggest that concomitant use of pectin and lovastatin might reduce the cholesterol-lowering effect of lovastatin, possibly due to reduced intestinal absorption of lovastatin (615).
|
Theoretically, pectin might reduce the absorption of tetracycline antibiotics, potentially decreasing their effectiveness.
A small clinical study shows that taking tetracycline with bismuth subsalicylate in a kaolin-pectin suspension reduces the absorption of tetracycline by about 34% (2213). It is unclear if these effects are due to pectin, kaolin, bismuth subsalicylate, or the combination.
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
|
Zinc might reduce the levels and clinical effects of penicillamine.
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
|
Zinc modestly reduces levels of ritonavir.
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product Caprylic Acid Complex. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, biotin is generally well tolerated.
Most Common Adverse Effects: None.
Gastrointestinal ...Orally, high-dose biotin has been rarely associated with mild diarrhea. Transient mild diarrhea was reported by 2 patients taking biotin 300 mg daily (95662).
Pulmonary/Respiratory ...In one case report in France, a 76-year-old female frequent traveler developed eosinophilic pleuropericarditis after taking biotin 10 mg and pantothenic acid 300 mg daily for 2 months. She had also been taking trimetazidine for 6 years (3914). Whether eosinophilia in this case was related to biotin, pantothenic acid, other substances, or patient-specific conditions is unknown. There have been no other similar reports.
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, caprylic acid seems to be well tolerated, short-term.
Most Common Adverse Effects:
Orally: Mild abdominal discomfort and change in taste perception.
Topically: Skin irritation.
Dermatologic ...Topically, caprylic acid is irritating to the skin of some people (20277,25076). Orally, a single dose of caprylic acid was associated with the development of a rash under the dressing of an inserted catheter in one patient in a clinical study (97662).
Gastrointestinal ...Orally, caprylic acid may cause mild abdominal discomfort and a change in taste perception (97662).
Neurologic/CNS ...Orally, caprylic acid has rarely been reported to cause mild dizziness, headache, and fatigue (97662).
General
...Orally, garlic is generally well tolerated.
Topically, garlic seems to be well tolerated. Intravenously, there is insufficient reliable information available about adverse effects.
Most Common Adverse Effects:
Orally: Abdominal pain, body odor, flatulence, malodorous breath, and nausea. Allergic reactions in sensitive individuals.
Topically: Burns and dermatitis with fresh garlic.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about increased risk of bleeding with garlic.
Dermatologic
...Orally, garlic may cause pruritus (51316,51474,107239), flushing, and acne (107239).
Oral intake of a specific garlic product containing allicin (Allimax) has been associated with a case of pruritic rash (51474). Enteric-coated garlic tablets standardized to 1.5% allicin have also been associated with a case of pruritus (51316). Garlic has also been associated with a case of superficial pemphigus in a 49-year-old male with type 2 diabetes (51564). Garlic-induced oral ulcers have also been reported (51467).
Topically, garlic may cause contact dermatitis and urticaria (4833,5004,12635,51258,51265,51375,51403,51412,51459,51483)(51511,51512,51530,51616,51617,51618,111769), as well as contact cheilitis (51384). Fresh garlic may be more likely to elicit a reaction than garlic extract. Most reactions have resolved following withdrawal of garlic therapy. In one case report, applying crushed garlic on the neck to help ease a sore throat resulted in an itchy, burning, erythematous lesion in a young female patient. The lesion healed after one week of treatment with topical antibiotics, steroids, and antihistamine ointments (88390). Cases of occupational eczema or dermatitis have been reported in cooks (51303,51210), food handlers (51292), and caterers (51304). According to one case report, dermatitis appeared in chefs exposed to garlic (15033). Treatment with acitretin 25 mg daily or topical psoralen-ultraviolet A (PUVA) for 12 weeks proved effective in mitigating the symptoms. A 34-year-old female with a history of hand dermatitis and paronychia had a worsening of these conditions after peeling raw garlic. She had a positive skin patch test to fresh, raw garlic but not to any other tested allergens, and the conditions resolved when she avoided contact with garlic (105528). Topically, garlic may also cause chemical burns, usually within 12 hours of application. Second- and third-degree chemical burns have been reported in adults, children, and infants exposed to topical garlic, often as an unintended consequence of using garlic medicinally on the skin (585,4832,51226,51230,51252,51281,51377,51418,51468,51495,51536)(51558,51576,51577,88409,96006). A case of painful blisters on the soles of the feet of a 23-year-old Chinese female has been attributed to chemical burns caused by applying crushed raw garlic for 3 hours (51440). Topically, garlic may also cause hyperpigmentation, ulcers, necrotic lesions, facial flushing, and local irritation (4832,15030,51268,51269,108606). In one case report, applying crushed raw garlic to the palatal mucosa for several minutes to relieve mouth pain resulted in a chemical burn that produced a 3 cm necrotic ulcer in an adult female with trigeminal neuralgia (108606).
Gastrointestinal
...Orally, dehydrated garlic preparations or raw garlic may cause malodorous breath (51438,51444), body odor (732,1873,4784,4793,4795,4798,9201,10787,42692,49769)(51269,51316,51467,51602), abdominal pain or fullness, anorexia, diarrhea, constipation, flatulence, belching, heartburn, nausea, unpleasant taste, reflux, and bowel obstruction (1884,6457,6897,9201,49769,51269,51343,51380,51438,51442)(51450,51457,51466,51471,51474,51520,51593,51602,51623,88398)(88405,111766,114892).
Large quantities of garlic may damage the gastrointestinal tract. In one case report, a patient taking garlic for hypertension reported odynophagia and retrosternal pain after taking garlic without any water the previous day. An esophageal lesion 3 cm in length was detected upon endoscopy. The symptoms resolved 3 days after starting a liquid diet and taking lansoprazole 30 mg twice daily and sucralfate four times daily (88389). One case of bowel obstruction was reported in a 66-year-old male who ingested an entire garlic bulb (51525). Esophageal perforation has been reported in at least 17 individuals who consumed entire garlic cloves. In one case the perforation led to mediastinitis and death (102672).
Garlic has also been associated with eosinophilic infiltration of the gastrointestinal tract. In one case report a 42-year-old female presented with symptoms of eosinophilic gastroenteritis, which included pollinosis, asthma, diarrhea, heart burn, peripheral eosinophilia, and urticaria. After stopping use of garlic and sesame, the patient improved (51441). In a case report of eosinophilic esophagitis, garlic was determined to be the causative agent in a patient with long-standing gastrointestinal symptoms. The patient had attempted to treat upper gastrointestinal symptoms as gastrointestinal reflux disease without success for many years. Skin prick testing showed a positive reaction to garlic, of which the patient noted frequent consumption. Marked symptom improvement was noted within 3 weeks of garlic avoidance (88393).
Intravenously, garlic 1 mg/kg of body weight daily diluted into 500 mL saline and administered over 4 hours has been reported to cause abdominal discomfort, vomiting, diarrhea, nausea, anorexia, flatulence, weight loss, and garlicky body odor (51462).
Clinical research suggests that patients with metabolic syndrome taking 1600 mg of powdered garlic by mouth daily for 3 months may experience improved intestinal transit time when compared with placebo, suggesting that garlic powder may reduce symptoms of constipation (110722).
Genitourinary ...Orally, garlic might cause dysuria, hematuria, or polyuria (51438,51450,51467,113618). In one case, an older male with high dietary and supplemental garlic intake at doses of 300-5400 mg daily for 3-4 years developed severe hematuria with clots after undergoing a minimally invasive prostate procedure (113618).
Hematologic
...Oral use of dietary garlic or supplements containing garlic has caused platelet dysfunction, increased fibrinolytic activity, prolonged bleeding time, retrobulbar hemorrhage (bleeding behind the eye) postoperative bleeding, and spinal epidural hematoma (586,587,4801,4802,11325,51397,51473,51491,51532,51534)(51570,51584,51593,51594,113618).
Also, a case of kidney hematoma following extracorporeal shock-wave lithotripsy (SWL) has been reported in a patient with nephrolithiasis who took aged garlic (51630). A case of increased bleeding time that complicated epistaxis management has been reported in a patient taking garlic, aspirin, and milk thistle (51426).
Intravenously, garlic has been associated with the development of thrombophlebitis at the injection site (51462).
Immunologic
...There is a case report of an immediate sensitivity reaction to oral raw garlic, resulting in wheals, in a 31-year-old female.
The patient did not react to cooked garlic, and skin prick tests showed allergy only to raw garlic (96015). Researchers note that at least some allergens in raw garlic are heat labile (88392,96012,96015). This suggests that consuming cooked rather than raw garlic may help avoid this reaction in patients allergic to raw garlic. However, different people react to different allergens in garlic. At least some of these allergens are heat stable (96012). While rare, garlic-induced anaphylaxis has been reported (88392,96012).
Topically, allergic contact dermatitis has been reported in case reports (51406,51498,51510,51519,51560).
Musculoskeletal ...Orally, garlic has been associated with individual cases of gout and low back pain (51474,51467), but it is not clear if these adverse events can be attributed to garlic.
Neurologic/CNS ...Orally, dizziness, insomnia, headaches, diaphoresis, fever, chills, somnolence, increased appetite, euphoria, and weight loss have been reported with garlic (15032,42692,51316,51467,51471,51520). In one case, the smell of garlic was identified as a trigger for migraines in a 32-year-old female. The subject reported fortification spectra along with visual spots for a few seconds followed by instantaneous biparietal, crushing level (10/10) headaches upon exposure to the scent of garlic or onion (88404).
Pulmonary/Respiratory ...Garlic exposure, most notably in occupational settings, may cause asthma and other symptoms such as sneezing, nasal obstruction, rhinorrhea, and sinusitis (40661,51218). A case of minor hemoptysis has been reported for one patient with cystic fibrosis following intake of garlic capsules orally once daily for 8 weeks (51438). A 77-year-old female developed pneumonia related to the intake of one whole black garlic clove daily. The cloves were prepared by heating a whole garlic bulb in a pot for one month. Symptoms included dyspnea and coughing, and test results were positive for lymphocyte-induced stimulation by black garlic and raw garlic. The patient required treatment with oral steroids and was told to avoid garlic (96011).
General
...There is limited reliable information available about the safety of goldenseal when used in more than a single dose.
Berberine, a constituent of goldenseal, is generally well tolerated when used orally.
Most Common Adverse Effects:
Orally: Berberine, a constituent of goldenseal, can cause abdominal distension, abdominal pain, bitter taste, constipation, diarrhea, flatulence, headache, nausea, and vomiting.
Dermatologic ...Orally, berberine, a constituent of goldenseal, may cause rash. However, this appears to be rare (34285). A case of photosensitivity characterized by pruritic, erythematous rash on sun-exposed skin has been reported in a 32-year-old female taking a combination product containing goldenseal, ginseng, bee pollen, and other ingredients. The rash resolved following discontinuation of the supplement and treatment with corticosteroids (33954). It is not clear if this adverse effect is due to goldenseal, other ingredients, or the combination.
Endocrine ...A case of severe, reversible hypernatremia has been reported in an 11-year-old female with new-onset type 1 diabetes and diabetic ketoacidosis who took a goldenseal supplement (52592).
Gastrointestinal ...Orally, berberine, a constituent of goldenseal, may cause diarrhea, constipation, flatulence, vomiting, abdominal pain, abdominal distention, and bitter taste (33648,33689,34245,34247,34285,91953). Theoretically, these effects may occur in patients taking goldenseal. However, this hasn't been reported in clinical research or case reports.
Neurologic/CNS ...Orally, berberine, a constituent of goldenseal, may cause headache when taken in a dose of 5 mg/kg daily (33648). Theoretically, this may occur with goldenseal, but this hasn't been reported in clinical research or case reports.
General
...Orally, grapefruit and grapefruit juice are generally well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions in sensitive individuals have been reported. When large quantities are consumed, arrhythmias, mineralocorticoid excess, QT prolongation, and pseudohyperaldosteronism have been reported. There is also some concern for increased breast cancer risk with grapefruit consumption.
Cardiovascular ...Orally, consumption of pink grapefruit juice 1000 mL can cause QT prolongation and cause arrhythmias in healthy patients and worsen arrhythmias in cardiomyopathy patients (13031,91424).
Endocrine ...Orally, high doses of grapefruit juice have been observed to cause pseudohyperaldosteronism and mineralocorticoid excess (53340,53346).
Gastrointestinal ...In a case report, grapefruit juice held against the teeth resulted in enamel and tooth surface loss (53368).
Immunologic ...Orally, grapefruit can cause allergic sensitization characterized by eosinophilic gastroenteritis, urticaria, and generalized pruritus (53351,53360).
Oncologic ...Preliminary population research shows that postmenopausal adults who consume a quarter or more of a whole grapefruit daily have a 25% to 30% increased risk of developing breast cancer (14858). Grapefruit is a potent inhibitor of cytochrome P450 3A4, which metabolizes estrogen. Consuming large amounts of grapefruit might significantly increase endogenous estrogen levels and therefore increase the risk of breast cancer. More evidence is needed to validate these findings. Until more is known, advise patients to consume grapefruit in moderation.
Renal ...In population research, consumption of 240 mL/day of grapefruit juice is associated with an increased risk of kidney stones (4216,53372).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally and topically, papain seems to be well tolerated when used short-term at appropriate doses.
Taking high oral doses may be unsafe.
Most Common Adverse Effects:
Orally: Allergic reactions in sensitive individuals.
Topically: Urticaria and pruritus in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Esophageal perforation and severe gastritis with high doses.
Dermatologic ...Topically, papain can cause itching (966). Urticarial reactions and itching have been reported in people occupationally exposed to papain, with papain confirmed as the causative agent by skin prick tests or radioallergosorbent tests (RAST) (95533,95534). In a randomized controlled trial assessing the effects of papain, trypsin, and chymotrypsin on adverse effects from radiotherapy, moderate to severe epitheliolysis was more frequent in the enzyme-treated group than the placebo group (67834). It is unclear if this adverse effect is due to papain, other enzymes, or the combination.
Gastrointestinal ...Orally, papain has been associated with diarrhea. In a randomized controlled trial assessing the effects of papain, trypsin, and chymotrypsin on adverse effects from radiotherapy, moderate to severe diarrhea was more frequent in the enzyme-treated group than the placebo group (67834). However, it is unclear if this adverse effect is due to papain, other enzymes, or the combination. Papain has also been associated with gastric ulcers and esophageal perforation in case reports of phytobezoars treated with papain (67848). In general, large amounts of papain can cause esophageal perforation (6). Ingestion of papaya latex (raw papain) can cause severe gastritis.
Genitourinary ...Orally, papain has been associated with hypernatremia in case reports of phytobezoars treated with papain (67848).
Immunologic ...Orally, papain may cause allergic reactions, including itchy watery eyes, runny nose, sneezing, abdominal cramps, sweating, and diarrhea, in individuals sensitive to papain (6,967). Occupational exposure to airborne papain dust may also cause respiratory allergic reactions (95532,95533,95534,95535,95536).
Pulmonary/Respiratory ...Occupational exposure to airborne papain dust may cause respiratory allergic reactions. Symptoms include rhinitis, sneezing, conjunctivitis, dyspnea, wheezing, cough, and asthma. In most cases, papain is confirmed as the causative agent by skin prick tests, radioallergosorbent tests (RAST), or detection of papain-specific immunoglobulin E (IgE) and IgG (95532,95533,95534,95535,95536).
General ...A thorough evaluation of safety outcomes with pau d'arco has not been conducted. However, taking the lapachol constituent of pau d'arco in doses above 1.5 grams daily is regarded as unsafe.
Gastrointestinal ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause severe nausea, vomiting, and diarrhea (91939).
Hematologic ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause anemia and increased risk of bleeding (91939).
Immunologic ...Occupational exposure to sawdust from the pau d'arco tree and related species may cause asthma and dermatitis. The fresh sawdust can produce erythema and papules which progress to a severe weeping and crusting dermatitis (92184).
Neurologic/CNS ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause dizziness (91939).
General
...Orally, pectin seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, gas, loose stools, and mild cramps.
Serious Adverse Effects (Rare):
All routes of administration: Allergic reactions, including anaphylaxis, in sensitive individuals.
Gastrointestinal ...Orally, pectin alone or in combination with guar gum and insoluble fiber can cause gastrointestinal adverse effects such as mild cramps, diarrhea, gas, and loose stools (12547,15020,92473).
Immunologic ...Orally and topically, pectin may cause allergic reactions in sensitive individuals. In one case, a 7-year-old boy with a history of oral allergy syndrome after consuming a pectin-containing beverage experienced anaphylaxis after taking a citrus bath containing pectin. Allergy testing confirmed sensitivity to pectin (106928).
Pulmonary/Respiratory ...The occupational inhalation of pectin dust can cause asthma (580,581,582,583,584).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).