Ingredients | Amount Per Serving |
---|---|
Proprietary Enzyme Blend
|
185 mg |
Amylase
( (15,460 DU) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
((34,000 HUT) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
Cellulase
((1,430 CU) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
((530 ALU) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
Invertase
((680 SU) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
Alpha-Galactosidase
( (80 GaIU) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
((228 FCCLU) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
Maltase
(Amylase)
((3,585 DP) (Guaranteed enzymatic activity values are measured at time of manufacture.) )
|
|
(root)
|
38 mg |
(root)
|
38 mg |
(seed)
|
36 mg |
(seed)
|
36 mg |
Maltodextrin, Hydroxypropyl Methylcellulose, purified Water
Below is general information about the effectiveness of the known ingredients contained in the product Catalyst-7. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Proteolytic enzymes represent a wide group of enzymes that are used alone or in combination. See specific monographs for effectiveness information.
Below is general information about the safety of the known ingredients contained in the product Catalyst-7. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in food. Anise and anise oil have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when anise powder is used orally and appropriately in medicinal amounts. Anise powder has been used with apparent safety in clinical research at doses of up to 9 grams daily for up to 4 weeks (94944,94945). ...when anise oil is used orally and appropriately in medicinal amounts. Anise oil has been used with apparent safety in clinical research at doses of up to 600 mg daily for up to 4 weeks (94946,94947).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in food.
Anise and anise oil have Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of anise when used by children in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
Anise and anise oil have Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of anise when taken orally in medicinal amounts during pregnancy or breast-feeding.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fennel has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when fennel essential oil or extract is used orally and appropriately, short-term. Twenty-five drops (about 1.25 mL) of fennel fruit extract standardized to fennel 2% essential oil has been safely used four times daily for 5 days (49422). Also, two 100 mg capsules each containing fennel 30% essential oil standardized to 71-90 mg of anethole has been safely used daily for 8 weeks (97498). Powdered fennel extract has been used with apparent safety at a dose of 800 mg daily for 2 weeks (104199). ...when creams containing fennel 2% to 5% are applied topically (49429,92509).
CHILDREN: POSSIBLY SAFE
when combination products containing fennel are used to treat colic in infants for up to one week.
Studied products include up to 20 mL of a fennel seed oil emulsion; a specific product (ColiMil) containing fennel 164 mg, lemon balm 97 mg, and German chamomile 178 mg; and up to 450 mL of a specific tea (Calma-Bebi, Bonomelli) containing fennel, chamomile, vervain, licorice, and lemon balm (16735,19715,49428).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Observational research has found that regular use of fennel during pregnancy is associated with shortened gestation (100513).
LACTATION: POSSIBLY UNSAFE
when used orally.
Case reports have linked consumption of an herbal tea containing extracts of fennel, licorice, anise, and goat's rue to neurotoxicity in two breast-feeding infants. The adverse effect was attributed to anethole, a constituent of fennel and anise (16744). However, levels of anethole were not measured in breastmilk, and the herbal tea was not tested for contaminants. Furthermore, other adverse effects related to use of fennel during lactation have not been reported. However, until more is known, avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately with lactose-containing foods. Lactase has Generally Recognized as Safe (GRAS) status in the US when prepared from Candida pseudotropicalis or Kluyveromyces lactis (104108,104109). Lactase has been used safely in doses up to 9900 international units (IU) and up to 13,500 food chemical codex (FCC) units (2371,2372,2373,106669).
CHILDREN: LIKELY SAFE
when used orally and appropriately with lactose-containing foods.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately with lactose-containing foods.
There is insufficient reliable information available about the safety of lipase.
CHILDREN: POSSIBLY UNSAFE
when recombinant human bile salt-stimulated lipase (rhBSSL) is used orally by premature infants.
Adding rhBSSL to infant formula or pasteurized breast milk increases the risk for serious gastrointestinal adverse effects in premature infants (101940).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when marshmallow root and leaf are used in amounts commonly found in foods. Marshmallow root has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when marshmallow root and leaf are used orally in medicinal amounts (4,12). ...when used topically (4,62020). There is insufficient reliable information available about the safety of marshmallow flower.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
POSSIBLY SAFE ...when used orally and appropriately. Various proteolytic enzymes have been safely used orally in clinical research (716,964,965,968,969,6252,6253,10622,11457,18281,18284) (91104,91105,91106,91111,96449). Side effects are typically mild to moderate and most often include gastrointestinal effects. See specific monographs for more detailed information related to the safety of individual proteolytic enzymes. ...when used topically and appropriately. Various proteolytic enzymes have been safely used topically in clinical research (67835,67843,67845,91113). Some proteolytic enzymes might cause allergic reactions when used topically. See specific monographs for more detailed information related to the safety of individual proteolytic enzymes.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Catalyst-7. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, anise oil might decrease the levels and clinical effects of acetaminophen.
Animal research shows that taking anise oil with acetaminophen decreases peak plasma levels of acetaminophen but does not reduce overall bioavailability (94951). Whether this interaction will occur in humans is unclear.
|
Theoretically, anise seed might increase the risk of hypoglycemia when taken with antidiabetes drugs.
A small clinical study shows that anise seed powder decreases fasting blood glucose levels by 36% when compared to baseline (94953).
|
Theoretically, anise oil might decrease the efficacy of caffeine.
Animal research shows that taking anise oil with caffeine decreases the bioavailability of caffeine (94951). Whether this interaction will occur in humans is unclear.
|
Theoretically, anise oil might increase the effects and adverse effects of codeine.
Animal research shows that anise oil increases the analgesic effects of codeine, possibly by inducing its phase I metabolism and increasing conversion to morphine (94950). Whether this interaction occurs in humans is unclear.
|
Theoretically, anise might interfere with contraceptive drug therapy.
|
Theoretically, anise oil might increase the effects and adverse effects of diazepam.
Animal research shows that taking anise oil with diazepam increases the motor impairment associated with diazepam, possibly by inhibiting its breakdown by cytochrome P450 3A4 (94950). Whether this interaction occurs in humans is unclear.
|
Theoretically, anise might interfere with estrogen-based hormone replacement therapy.
|
Theoretically, anise oil might decrease the efficacy of fluoxetine.
Animal research shows that taking anise oil with fluoxetine reduces the antidepressant effects of fluoxetine, possibly by promoting its breakdown by cytochrome P450 2D6 (94950). Whether this interaction occurs in humans is unclear.
|
Theoretically, anise oil might decrease the efficacy of imipramine.
Animal research shows that taking anise oil with imipramine reduces the antidepressant effects of imipramine, possibly by promoting its breakdown by cytochrome P450 2D6 (94950). Whether this interaction occurs in humans is unclear.
|
Theoretically, anise oil might increase the effects and adverse effects of midazolam.
Animal research shows that taking anise oil with midazolam increases the motor impairment associated with midazolam, possibly by inhibiting its breakdown by cytochrome P450 3A4 (94950). Whether this interaction occurs in humans is unclear.
|
Theoretically, anise might interfere with tamoxifen therapy.
|
Theoretically, fennel might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
|
Theoretically, fennel might decrease the levels and clinical effects of ciprofloxacin.
Animal research shows that fennel reduces ciprofloxacin bioavailability by nearly 50%, possibly due to the metal cations such as calcium, iron, and magnesium contained in fennel. This study also found that fennel increased tissue distribution and slowed elimination of ciprofloxacin (6135). |
Theoretically, taking large amounts of fennel might decrease the effects of contraceptive drugs due to competition for estrogen receptors.
|
Theoretically, fennel might increase levels of drugs metabolized by CYP3A4.
|
Theoretically, taking large amounts of fennel might interfere with hormone replacement therapy due to competition for estrogen receptors.
|
Theoretically, taking large amounts of fennel might decrease the antiestrogenic effect of tamoxifen.
Some constituents of fennel have estrogenic activity (11), which may interfere with the antiestrogenic activity of tamoxifen. |
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, marshmallow flower might have antiplatelet effects.
Animal research suggests that marshmallow flower extract has antiplatelet effects (92846). However, the root and leaf of marshmallow, not the flower, are the plant parts most commonly found in dietary supplements. Theoretically, use of marshmallow flower with anticoagulant/antiplatelet drugs can have additive effects, and might increase the risk for bleeding in some patients.
|
Theoretically, due to potential diuretic effects, marshmallow might reduce excretion and increase levels of lithium.
Marshmallow is thought to have diuretic properties. To avoid lithium toxicity, the dose of lithium might need to be decreased when used with marshmallow.
|
Theoretically, mucilage in marshmallow might impair absorption of oral drugs.
|
Below is general information about the adverse effects of the known ingredients contained in the product Catalyst-7. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, anise seems to be well tolerated.
Most Common Adverse Effects:
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Dermatologic ...Topically, anise, in combination with other herbs, has been reported to cause localized pruritus (13483).
Immunologic ...Anise can cause allergic reactions in sensitive individuals. Orally or by inhalation, anise can cause rhinoconjunctivitis, occupational asthma, and anaphylaxis (13484). Topically, anise can cause contact dermatitis, rhinitis, and asthma (31319,31341). Contact dermatitis and cheilitis have also been reported following the use of toothpaste containing anethole, a constituent of anise (31403,31528).
General
...Orally and topically, fennel seems to be well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal discomfort, photosensitivity, and allergic reactions in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Seizures.
Dermatologic ...Advise patients to avoid excessive sunlight or ultraviolet light exposure while using fennel (19). Allergic reactions affecting the skin such as atopic dermatitis and photosensitivity may occur in patients who consume fennel (6178,49507).
Gastrointestinal ...Orally, fennel may cause gastrointestinal complaints, including nausea and vomiting (19146,104196).
Hematologic ...Methemoglobinemia has been reported in four infants following intoxication related to ingestion of a homemade fennel puree that may have been made from improperly stored fennel (49444).
Immunologic ...A case report describes an 11-year-old male who developed an allergy to fennel-containing toothpaste. Immediately after using the toothpaste, the patient experienced sneezing, coughing, itchy mouth, rhinorrhea, nasal congestion, wheezing, difficulty breathing, and palpitations, which resolved within 10 minutes of spitting out the toothpaste and rinsing the mouth. In challenge tests, the patient reacted to chewing fresh fennel root, but not ground fennel seeds (103822).
Neurologic/CNS ...Orally, fennel oil has been associated with tonic clonic and generalized seizures (12868). New-onset cluster headaches are reported in a 24-year-old female while using a toothpaste containing fennel and camphor for 3 months. The headaches resolved upon stopping the toothpaste (112368). It is unclear if this adverse effect can be attributed to fennel, camphor, or the combination.
Pulmonary/Respiratory ...Orally, fennel and fennel seed have been reported to cause bronchial asthma (49478).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General ...Orally, lactase is generally well tolerated.
Immunologic ...A case of lactase-induced contact dermatitis and immunoglobulin E (IgE)-mediated allergic rhinoconjunctivitis has been reported in a worker exposed to powdered lactase. Allergy to lactase was confirmed by prick test, open application test, and chamber challenge test (96348).
General
...No adverse effects have been reported in adults.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal adverse effects, such as necrotizing enterocolitis, when recombinant human bile salt-stimulated lipase is used in premature infants.
Gastrointestinal ...Orally, when added to the formula or pasteurized breast milk consumed by premature infants, recombinant human bile salt-stimulated lipase (rhBSSL) can cause gastrointestinal adverse effects, including abdominal distension, flatulence, constipation, colic, abdominal pain, gastroenteritis, vomiting, regurgitation, and rectal bleeding (101940). Premature infants receiving rhBSSL also had a slightly higher rate of necrotizing enterocolitis (NEC) when compared with those receiving placebo. After review by a panel of experts, it was determined that the rate of confirmed or suspected NEC in infants consuming rhBSSL was 3.3%, compared with 0.5% in those receiving placebo. Although this rate of NEC is lower than the historical rate of occurrence in premature infants (11%), a possible increased risk for NEC cannot be ruled out (101940).
General ...Orally and topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, proteolytic enzymes are generally well tolerated.
See specific monographs for detailed safety information related to individual proteolytic enzymes.
Most Common Adverse Effects:
Orally: Gastrointestinal upset.
Serious Adverse Effects (Rare):
Topically: Allergic reactions.
Gastrointestinal ...Orally, some patients taking proteolytic enzymes may have gastrointestinal complaints (101517).
Immunologic ...Proteolytic enzymes are commonly found in laundry detergents and pre-spotter products. Rarely, protease specific IgE positive tests possibly related to these products have occurred. Exposure may be airborne or topical (102705). In addition, in case reports, occupational exposure to the airborne proteolytic enzyme pepsin has resulted in allergic rhinoconjunctivitis or asthma (102706,102707).