Ingredients | Amount Per Serving |
---|---|
400 mg | |
(Coffea canephora L.)
(bean)
(Chlorogenic Acid)
(50% CGA)
|
250 mg |
200 mg | |
150 mg | |
150 mg | |
(Zingiber officinale )
(root)
|
50 mg |
(Coleus forskohlii )
(root)
(Forskolin)
(20% Forskolin)
|
50 mg |
Kelp, Powder
|
40 mg |
(Capsicum annuum )
(fruit)
|
20 mg |
(Black Pepper Fruit Extract)
|
5 mg |
Hypromellose, Magnesium Stearate (Alt. Name: Mg Stearate), Silicon Dioxide (Alt. Name: SiO2), Candurin Silver
Below is general information about the effectiveness of the known ingredients contained in the product Thyro-Drive. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Thyro-Drive. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Acetyl-L-carnitine has been used safely in doses up to 3 grams daily in clinical trials lasting up to 33 months (42,1589,1594,1595,1596,1597,1598,1599,3600,3601) (9105,9791,10076,12743,12745,58375,90755,90756,90759,90761)(90766,90767,90768,95063,95067,111862).
POSSIBLY SAFE ...when used parenterally and appropriately under medical supervision (1591,1592,12743).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Acetyl-L-carnitine has been safely used orally in children for up to 6 weeks (90754).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Black pepper has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when black pepper oil is applied topically. Black pepper oil is nonirritating to the skin and is generally well tolerated (11). ...when black pepper oil is inhaled through the nose or as a vapor through the mouth, short-term. Black pepper oil as a vapor or as an olfactory stimulant has been used with apparent safety in clinical studies for up to 3 days and 30 days, respectively (29159,29160,29161,90502). There is insufficient reliable information available about the safety of black pepper when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
CHILDREN: POSSIBLY UNSAFE
when used orally in large amounts.
Fatal cases of pepper aspiration have been reported in some patients (5619,5620). There is insufficient reliable information available about the safety of topical pepper oil when used in children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
PREGNANCY: LIKELY UNSAFE
when used orally in large amounts.
Black pepper might have abortifacient effects (11,19); contraindicated. There is insufficient reliable information available about the safety of topical pepper when used during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
There is insufficient reliable information available about the safety of black pepper when used in medicinal amounts during breast-feeding.
LIKELY SAFE ...when used orally in amounts typically found in food. Capsicum has Generally Recognized as Safe (GRAS) status in the US (4912). ...when used topically and appropriately (7038,10650,105345). The active capsicum constituent capsaicin is an FDA-approved ingredient used in certain over-the-counter, topical preparations (272).
POSSIBLY SAFE ...when used orally and appropriately, short-term in medicinal amounts. A specific sustained-release chili extract (Capsifen) has been used safely in doses of up to 200 mg daily, for up to 28 days (105196). ...when used intranasally and appropriately, short-term. Capsicum-containing nasal sprays, suspensions, and swabs seem to be safe when applied multiple times over 24 hours or when applied daily or every other day for up to 14 days. Although no serious side effects have been reported in clinical trials, intranasal application of capsicum-containing products can be very painful (14322,14324,14328,14329,14351,14352,14353,14356,14357) (14358,14359,14360,15016,105204). POSSIBLY UNSAFE when used orally, long-term or in high doses. There is concern that long-term use or use of excessive doses might be linked to hepatic or kidney damage, as well as hypertensive crisis (12404,40569,40606). There is insufficient reliable information available about the safety of capsicum when injected.
CHILDREN: POSSIBLY UNSAFE
when used topically in children under 2 years old (272).
There is insufficient reliable information available about the safety of capsicum when used orally in children.
PREGNANCY: LIKELY SAFE
when used topically and appropriately (272).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Capsicum 5 mg daily has been used for up to 28 days during the latter half of the second trimester and the third trimester (96457).
LACTATION: LIKELY SAFE
when used topically and appropriately (272).
LACTATION: POSSIBLY UNSAFE
when used orally.
Dermatitis can sometimes occur in infants when foods heavily spiced with capsicum peppers are ingested during lactation (739). Also, observational research suggests that intake of raw capsicum peppers during pregnancy is associated with an increased risk of sensitization to inhalant allergens in children by the age of 2 years (41021).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Coleus extract 500 mg daily has been used for up to 3 months without significant adverse effects (91885,100851). ...when used intravenously and appropriately, short-term. Intravenous forskolin, a constituent of coleus, seems to be safe when given at an appropriate rate of 0.5 mcg/kg/minute and increased at 15 minute intervals to 1.0, 2.0, and 3.0 mcg/kg/minute up to 1 hour (7278,7279). ...when used by inhalation and appropriately. Single-dose inhalation of forskolin powder 10 mg from a Spinhaler inhalator seems to be safe and well-tolerated (7281). ...when used ophthalmologically and appropriately. Coleus suspension eye drops (1%) have been safely used in clinical studies (7282,7283,7284,7402,7403,7405).
POSSIBLY UNSAFE ...when used orally in higher doses. Although coleus extracts have been used with apparent safety in doses up to 1.4 grams daily for 2 months (91884), taking coleus extract in doses exceeding 500 mg daily has been associated with an increased incidence of adverse effects, which are primarily gastrointestinal (100851).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Evidence from animal research suggests that high doses of coleus can inhibit embryo implantation and/or delay fetal development (25174); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
POSSIBLY SAFE ...when used orally and appropriately. Green coffee extracts taken in doses up to 1000 mg daily, providing up to 500 mg chlorogenic acid, have been used with apparent safety for up to 12 weeks in clinical research (17971,17972,103954). A specific green coffee extract (Svetol, Naturex) has been used with apparent safety in doses up to 200 mg five times daily for up to 12 weeks (17981,17982,17983). Green coffee also contains caffeine, although in lower amounts than regular coffee. One cup of green coffee contains about 20-50 mg of caffeine, compared with about 100 mg in one cup of regular coffee. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in food amounts. Raspberry ketone has Generally Recognized as Safe (GRAS) status for use as a food additive (102356,102358). There is insufficient reliable information available about the safety of raspberry ketone when used in medicinal amounts. However, raspberry ketone is structurally similar to synephrine, a known stimulant agent. Orally, cases of heart palpitations, tachycardia, elevated blood pressure, coronary vasospasm, sweating, feelings of shakiness, and diarrhea are reported after taking raspberry ketone (17961,112386,112400). In one case report, pulseless electrical activity arrest followed by resistant polymorphic ventricular tachycardia occurred in a patient taking raspberry ketone (112386).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of raspberry ketone; avoid using.
LIKELY SAFE ...when used orally in food amounts. Threonine as L-threonine in doses of 7-14 mg/kg daily (about 0.5-1 gram daily) has been suggested to be the minimum amount required to maintain a positive nitrogen balance in humans and is generally considered to be safe (60072,94096).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Taking threonine in doses up to 4 grams daily for up to 12 months seems to be safe (681,12056,12057,12059,60069).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Tyrosine has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Tyrosine has been used safely in doses up to 150 mg/kg daily for up to 3 months (7210,7211,7215). ...when used topically and appropriately (6155).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of tyrosine during pregnancy and lactation when used in medicinal amounts.
Some pharmacokinetic research shows that taking a single dose of tyrosine 2-10 grams orally can modestly increase levels of free tyrosine in breast milk. However, total levels are not affected, and levels remain within the range found in infant formulas. Therefore, it is not clear if the increase in free tyrosine is a concern (91467).
Below is general information about the interactions of the known ingredients contained in the product Thyro-Drive. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, acetyl-L-carnitine might increase the anticoagulant effects of acenocoumarol.
L-carnitine, the parent compound of acetyl-L-carnitine, might enhance the anticoagulant effects of acenocoumarol, an oral anticoagulant that is similar to warfarin, but shorter-acting (9878,12165). There are at least two case reports of INR elevation when L-carnitine was taken with acenocoumarol. In one case, a 33-year-old male with a previously stable INR had an elevated INR of 4.65 after L-carnitine was started and continued for 10 weeks. INR normalized after discontinuation of the L-carnitine-containing product (12165). It is unclear if such an interaction would also occur with acetyl-L-carnitine.
|
Theoretically, acetyl-L-carnitine might increase the risk of serotonergic side effects, including serotonin syndrome and cerebral vasoconstrictive disorders, when taken with serotonergic drugs.
Animal research shows that acetyl-L-carnitine can increase levels of serotonin in the brain (95065).
|
Theoretically, acetyl-L-carnitine might decrease the effectiveness of thyroid hormone replacement.
L-carnitine appears to act as a peripheral thyroid hormone antagonist by inhibiting entry of thyroid hormone into the nucleus of cells (12761). Taking L-carnitine also seems to diminish some of the symptoms of hyperthyroidism (8047). It is unclear if such an interaction would occur with acetyl-L-carnitine.
|
Theoretically, acetyl-L-carnitine might increase the anticoagulant effects of warfarin.
|
Theoretically, black pepper might increase the effects and side effects of amoxicillin.
Animal research shows that taking piperine, a constituent of black pepper, with amoxicillin increases plasma levels of amoxicillin (29269). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
In vitro research shows that piperine, a constituent of black pepper, seems to inhibit platelet aggregation (29206). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research shows that piperine, a constituent of black pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, black pepper might increase blood levels of atorvastatin.
Animal research shows that taking piperine, a constituent of black pepper, 35 mg/kg can increase the maximum serum concentration of atorvastatin three-fold (104188). This has not been reported in humans.
|
Theoretically, black pepper might increase blood levels of carbamazepine, potentially increasing the effects and side effects of carbamazepine.
One clinical study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that taking a single 20 mg dose of purified piperine, a constituent of black pepper, increases carbamazepine levels. Piperine may increase carbamazepine absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or inhibiting cytochrome P450 3A4 (CYP3A4) in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833). In vitro research also shows that piperine can increase carbamazepine levels by 11% in a time-dependent manner (103819).
|
Theoretically, black pepper might increase the effects and side effects of cyclosporine.
In vitro research shows that piperine, a constituent of black pepper, increases the bioavailability of cyclosporine (29282). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP1A1.
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP1A1 (29213). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2B1.
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP2B1 (29332). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2D6.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP3A4.
|
Theoretically, black pepper might increase blood levels of lithium due to its diuretic effects. The dose of lithium might need to be reduced.
Black pepper is thought to have diuretic properties (11).
|
Black pepper might increase blood levels of nevirapine.
Clinical research shows that piperine, a constituent of black pepper, increases the plasma concentration of nevirapine. However, no adverse effects were observed in this study (29209).
|
Theoretically, black pepper might increase levels of P-glycoprotein substrates.
|
Theoretically, black pepper might increase the sedative effects of pentobarbital.
Animal research shows that piperine, a constituent of black pepper, increases pentobarbital-induced sleeping time (29214).
|
Black pepper might increase blood levels of phenytoin.
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption, slow elimination, and increase levels of phenytoin (537,14442). Taking a single dose of black pepper 1 gram along with phenytoin seems to double the serum concentration of phenytoin (14375). Consuming a soup with black pepper providing piperine 44 mg/200 mL of soup along with phenytoin also seems to increase phenytoin levels when compared with consuming the same soup without black pepper (14442).
|
Black pepper might increase blood levels of propranolol.
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of propranolol (538).
|
Black pepper might increase blood levels of rifampin.
|
Black pepper might increase blood levels of theophylline.
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of theophylline (538).
|
Theoretically, using topical capsaicin may increase the risk of ACE inhibitor-induced cough.
There is one case report of a topically applied capsaicin cream contributing to the cough reflex in a patient using an ACEI (12414). However, it is unclear if this interaction is clinically significant.
|
Theoretically, capsicum may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
In vitro research shows that capsicum might increase the effects of antiplatelet drugs (12406,12407). Also, population research shows that capsicum is associated with an increased risk of self-reported bleeding in patients taking warfarin (12405,20348). However, clinical research shows that taking a single dose of capsaicin (Asian Herbex Ltd.), the active ingredient in capsicum, 400-800 mcg orally in combination with aspirin 500 mg does not decrease platelet aggregation when compared with taking aspirin 500 mg alone. Also, there was no notable effect on measures of platelet aggregation with capsaicin (92990). It is unclear whether capsaicin must be used in more than a single dose to affect platelet aggregation.
|
Theoretically, taking capsicum with antidiabetes drugs might increase the risk of hypoglycemia.
Preliminary clinical research shows that consuming capsicum 5 grams along with a glucose drink attenuates the rise in plasma glucose after 30 minutes by 21%, decreases the 2-hour postprandial area under the curve of plasma glucose by 11%, and increases the 2-hour postprandial area under the curve of plasma insulin by 58% in healthy individuals when compared with placebo (40453,40614). Other clinical research shows that taking capsicum 5 mg daily for 28 days significantly reduces postprandial blood glucose and insulin levels, but not fasting blood glucose and insulin levels, in patients with gestational diabetes (96457).
|
Theoretically, taking capsicum with aspirin might reduce the bioavailability of aspirin.
Animal research shows that acute or chronic intake of capsicum pepper reduces oral aspirin bioavailability (22617). This has not been shown in humans.
|
Theoretically, taking capsicum with ciprofloxacin might increase levels and adverse effects of ciprofloxacin.
Animal research shows that concomitant use of capsaicin, the active constituent of capsicum, and ciprofloxacin increases the bioavailability of ciprofloxacin by up to 70% (22613).
|
Theoretically, taking capsicum with theophylline might increase the levels and adverse effects of theophylline.
|
Theoretically, concomitant use of coleus and anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
|
Theoretically, combining coleus with antihypertensive drugs might cause additive blood pressure lowering effects and increase the risk of hypotension.
|
Theoretically, combining coleus with calcium channel blockers might increase the coronary vasodilatory effects.
|
Theoretically, taking coleus may affect drugs metabolized by CYP2C9 and increase the risk of adverse effects or reduce the effectiveness.
Research on the effect of coleus on CYP2C9 is conflicting. Some animal research shows that coleus extract can induce CYP2C9, while in vitro research shows that coleus can inhibit CYP2C9 (91891). Until more is known, advise patients that taking coleus might increase or decrease levels of drugs metabolized by CYP2C9.
|
Theoretically, taking coleus might decrease serum levels of drugs metabolized by CYP3A4.
In vitro research shows that coleus can activate the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (44399,44412). Although the clinical significance of this is not known, use caution when considering concomitant use of coleus and other drugs affected by these enzymes.
|
Theoretically, combining coleus with nitrates might increase the coronary vasodilatory effects.
|
Theoretically, taking coleus may affect the metabolism of warfarin and increase the risk of adverse effects or reduce the effectiveness.
Some animal research shows that coleus extract can induce cytochrome P450 2C9 (CYP2C9), an enzyme that metabolizes warfarin. However, other in vitro research shows that coleus can inhibit CYP2C9 (91891). Theoretically, taking coleus with drugs metabolized by CYP2C9 might affect drug levels and the risk of adverse effects. Until more is known, advise patients that taking coleus might increase or decrease levels of warfarin.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, green coffee might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Green coffee can contain caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products, be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
|
Theoretically, green coffee may decrease the levels and effects of alendronate.
In human research, drinking coffee with alendronate reduces the bioavailability of alendronate by 60% (11735). Whether green coffee reduces the bioavailability of alendronate has not been investigated. Separate green coffee ingestion and alendronate administration by two hours.
|
Theoretically, green coffee may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Green coffee can contain caffeine. Caffeine is reported to have antiplatelet activity (8028,8029). Theoretically, caffeine in green coffee might increase the risk of bleeding when used concomitantly with these agents. However, this interaction has not been reported in humans. There is some evidence that caffeinated coffee might increase the fibrinolytic activity in blood (8030).
|
Theoretically, taking green coffee and antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, taking green coffee with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, concomitant use of large amounts of green coffee might increase cardiac inotropic effects of beta-agonists.
Green coffee can contain caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, cimetidine might increase the effects and adverse effects of caffeine in green coffee.
|
Theoretically, green coffee might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Green coffee can contain caffeine. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in green coffee.
|
Theoretically, green coffee might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Green coffee can contain caffeine. Caffeine is a methylxanthine that may inhibit dipyridamole-induced vasodilation (11770,11772,24974,37985,53795). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products such as green coffee, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the levels and adverse effects of caffeine.
Green coffee can contain caffeine. In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, concomitant use might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk of stimulant adverse effects.
Green coffee can contain caffeine. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,9740,10307). Tell patients to avoid taking caffeine with ephedrine and other stimulants.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Green coffee can contain caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
|
Theoretically, abrupt green coffee withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
|
Theoretically, concomitant use might increase the risk of hypertension.
Green coffee can contain caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, green coffee might reduce the effects of pentobarbital.
Green coffee can contain caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, caffeine might increase the levels and clinical effects of pioglitazone.
Green coffee contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Green coffee can contain caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Green coffee can contain caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Green coffee can contain caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, green coffee might increase the levels and adverse effects of theophylline.
Green coffee can contain caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Green coffee can contain caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, raspberry ketone might increase the risk of adverse cardiovascular effects with stimulant drugs.
Structurally, raspberry ketone resembles synephrine, a known stimulant agent. Heart palpitations, elevated blood pressure, coronary vasospasm, pulseless electrical activity arrest, and resistant polymorphic ventricular tachycardia have been reported in patients taking raspberry ketone (17961,112386,112400).
|
Theoretically, raspberry ketone might increase warfarin dose requirements.
In one case report, a patient taking warfarin 55 mg per week had a decrease in INR over a period of one month while taking raspberry ketone 250 mg daily. A warfarin dose increase to 70 mg per week was necessary to maintain a therapeutic INR while taking raspberry ketone (17962). The mechanism for this potential interaction is not known.
|
Theoretically, threonine might decrease the effects of NMDA antagonists.
|
Theoretically, tyrosine might decrease the effectiveness of levodopa.
Tyrosine and levodopa compete for absorption in the proximal duodenum by the large neutral amino acid (LNAA) transport system (2719). Advise patients to separate doses of tyrosine and levodopa by at least 2 hours.
|
Theoretically, tyrosine might have additive effects with thyroid hormone medications.
Tyrosine is a precursor to thyroxine and might increase levels of thyroid hormones (7212).
|
Below is general information about the adverse effects of the known ingredients contained in the product Thyro-Drive. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, acetyl-L-carnitine is generally well tolerated.
Most Common Adverse Effects:
Orally: Agitation, dry mouth, headache, insomnia, and reduced appetite. A metabolite of acetyl-L-carnitine has been reported to cause a fishy odor of the urine, breath, and sweat.
Cardiovascular ...Orally, one patient in a pharmacokinetic study reported high blood pressure 8 hoursafter taking acetyl-L-carnitine 500 mg; however, it is unclear if this was due to acetyl-L-carnitine or another factor (95061).
Dermatologic ...Orally, a combination of acetyl-L-carnitine and alpha-lipoic acid may cause rash (90441).
Gastrointestinal ...Orally, acetyl-L-carnitine may cause nausea, vomiting, diarrhea, constipation, hiccups, abdominal distension and gastrointestinal upset or pain. However, gastrointestinal symptoms do not usually occur more often in patients receiving acetyl-L-carnitine than in patients receiving placebo (1596,1599,12743,13007,58922,90755,95063,95067,111889,111894). Acetyl-L-carnitine may also cause dry mouth and anorexia (58342). When taken orally, a combination of acetyl-L-carnitine and alpha-lipoic acid may cause diarrhea, constipation, and dyspepsia (90441).
Neurologic/CNS ...Orally, acetyl-L-carnitine may cause headache and insomnia (90760,90767,95063). In one clinical trial, two patients with antiretroviral toxic neuropathy reported paresthesia, pain, and neuropathy after taking acetyl-L-carnitine 1000 mg daily (58342). A case of mania has been reported for a patient with bipolar I disorder currently in remission. The patient presented with symptoms after taking multiple supplements for the past 4 weeks including acetyl-L-carnitine 1000 mg twice daily. The symptoms appeared 3 days after beginning to take acetyl-L-carnitine and worsened over the next week. The patient had increased speech rate and volume and reported increased energy levels and racing thoughts. The patient's parent reported irritability and an increase in loud behaviors at home, similar to a previous episode of mania. The patient was advised to discontinue acetyl-L-carnitine, and the manic symptoms disappeared 3 days later (95062).
Psychiatric ...Orally, acetyl-L-carnitine may cause agitation (restlessness and motor overactivity) (1596,1599,12743,13007). Side effects reported in people with Alzheimer disease include psychiatric disturbances such as depression, mania, confusion and aggression, but it is not clear whether these are due to acetyl-L-carnitine or the condition itself (1594,1595,1596,1597,1598,1599,9105,10391).
Other ...One of the metabolites of acetyl-L-carnitine can cause the urine, breath, and sweat to have a fishy odor (12756). Also, foul smelling urine has been reported following oral use of a combination of acetyl-L-carnitine and alpha-lipoic acid (90441).
General
...Orally, black pepper seems to be well tolerated when used in the amounts found in food or when taken as a medicine as a single dose.
Topically and as aromatherapy, black pepper oil seems to be well tolerated.
Most Common Adverse Effects:
Orally: Burning aftertaste, dyspepsia, and reduced taste perception.
Inhalation: Cough.
Serious Adverse Effects (Rare):
Orally: Allergic reaction in sensitive individuals.
Gastrointestinal ...Orally, black pepper can cause a burning aftertaste (5619) and dyspepsia (38061). Single and repeated application of piperine, the active constituent in black pepper, to the tongue and oral cavity can decrease taste perception (29267). By intragastric route, black pepper 1.5 grams has been reported to cause gastrointestinal microbleeds (29164). It is not clear if such an effect would occur with oral administration.
Immunologic ...In one case report, a 17-month-old male developed hives, red eyes, facial swelling, and a severe cough following consumption of a sauce containing multiple ingredients. Allergen skin tests were positive to both black pepper and cayenne, which were found in the sauce (93947).
Ocular/Otic ...Topically, ground black pepper can cause redness of the eyes and swelling of the eyelids (5619).
Pulmonary/Respiratory ...When inhaled through the nose as an olfactory stimulant, black pepper oil has been reported to cause cough in one clinical trial (29162).
General
...Orally, capsicum is generally well tolerated in amounts typically found in food or when the extract is used in doses of up to 200 mg daily.
Topically and intranasally, capsaicin, a constituent of capsicum, is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, burning, diarrhea, dyspepsia, gas, headache, mild constipation, nausea, rhinorrhea, skin flushing, and sweating.
Serious Adverse Effects (Rare):
Orally: Cases of myocardial infarction and hypertensive crisis have been reported.
Cardiovascular
...Orally, palpitation was reported in one clinical trial (105196).
One case of myocardial infarction has been reported in a 41-year-old male without cardiovascular risk factors; the event was attributed to the use of an oral capsicum pepper pill that the patient had been taking for weight loss (40768). Another case of coronary vasospasm and acute myocardial infarction has been reported for a healthy 29-year-old male; the event was attributed to the use of a topical capsicum-containing patch that the patient had been applying to the middle of the back for 6 days (40658). Two cases of arterial hypertensive crisis have been reported for individuals who ingested a large amount of peppers and chili peppers the day before. One of the patients also had an acute myocardial infarction, and the other had high levels of thyroid stimulating hormone (40569,40606).
Dermatologic
...Orally, capsicum or its constituent capsaicin may cause urticaria and skin wheals in rare cases (96457,105203).
Topically, capsicum can cause a prickling sensation, itching, pain, burning, edema, stinging, irritation, rash, and erythema. About 1 in 10 patients who use capsaicin topically discontinue treatment because of adverse effects. These effects seem to occur more often with topical formulations containing higher concentrations of capsaicin, the active constituent of capsicum. Side effects tend to diminish with continued use (12401,15260,15261,40358,40439,40483,40547,40676,40682,40719)(40784,40847,92979,92983,92984,96453,105193,105197,105202,111514). In one case, application of a capsaicin 8% patch (Qutenza) for 60 minutes caused a second-degree burn, characterized by burning, erythema, severe pain, and blistering at the administration site. The burn was treated with topical corticosteroids, but 9 months later neuropathic pain persisted, resulting in limited mobility. It is unclear whether the mobility sequalae were caused by topical capsaicin or the patient's pre-existing neurological disorders (111514). Skin contact with fresh capsicum fruit can also cause irritation or contact dermatitis (12408).
Intranasally, capsaicin can cause nasal burning and pain in most patients. It also often causes lacrimation, sneezing, and excessive nasal secretion; however, these side effects appear to diminish with repeat applications (14323,14329,14358). In some cases, the burning sensation disappears after 5-8 applications (14351,14358). In some cases, patients are pretreated with intranasal lidocaine to decrease the pain of intranasal capsaicin treatment. However, even with lidocaine pretreatment, patients seem to experience significant pain (14324).
Gastrointestinal
...Orally, capsicum can cause upper abdominal discomfort, including irritation, fullness, dyspepsia, gas, bloating, nausea, epigastric pain and burning, anal burning, diarrhea, mild constipation, and belching (12403,12410,40338,40427,40456,40503,40560,40584,40605,40665)(40718,40725,40745,40808,40828,96456,96457,105194,105196).
There is a case report of a 3-year-old female who experienced a burning and swollen mouth and lips after touching the arm of a parent that had been treated with a capsaicin patch and then placing the fingers in the mouth (105199). Excessive amounts of capsaicin can lead to gastroenteritis and hepatic necrosis (12404). In a case report, a 40-year-old male with diabetes consumed white wine daily and chewed cayenne which was thought to result in black teeth stains and loss of enamel (40809). Some preliminary research links ingestion of capsaicin with stomach and gallbladder cancer; however the link may be due to contamination of capsaicin products with carcinogens (40771).
Topically, capsaicin can cause diarrhea and vomiting (105202).
Immunologic ...In a case report, a 34-year-old female had anaphylaxis involving difficulty breathing and stupor and also urticaria after consuming a red bell pepper, which is in the capsicum genus. The causal chemical was theorized to be 1,3-beta-glucanase (92978). In another case report, a 33-year-old female experienced angioedema, difficulty breathing and swallowing, and urticaria after ingesting raw green and red peppers (92982).
Neurologic/CNS ...Orally, capsicum can cause sweating and flushing of the head and neck, lacrimation, headache, faintness, and rhinorrhea (7005,12410,105196,105203). Topically, applying capsaicin can cause headache (96450,105202). Injection of capsaicin into the intermetatarsal space has also been associated with headache (96454).
Ocular/Otic
...Topically, capsicum can be extremely irritating to the eyes and mucous membranes.
Capsicum oleoresin, an oily extract in pepper self-defense sprays, causes intense eye pain. It can also cause erythema, blepharospasm, tearing, shortness of breath, and blurred vision. In rare cases, corneal abrasions have occurred (12408,12409,40345,40348,40383,40720,40857).
Inhalation of capsicum can cause eye irritation, and allergic alveolitis (5885). In a case report, a 38-year-old female had acute anterior uveitis that developed about 12 hours after using a specific patch (Isola Capsicum N Plus) that contained capsaicin 1.5 mg per patch and methyl salicylate 132 mg per patch for neck pain. The uveitis was controlled with topical steroids and did not recur (92977).
Oncologic ...Population research suggests that moderate to high intake of capsaicin, the active constituent of capsicum, is associated with an increased risk of gastric cancer, while low intake is associated with a decreased risk. It is not clear from the study what amount of capsaicin is considered high versus low intake (92988). Additionally, some research suggests that any link may be due to contamination of capsaicin products with carcinogens (40771).
Pulmonary/Respiratory
...Orally, difficulty breathing was reported in a clinical trial (105196).
Topically, nasopharyngitis related to the use of a cream containing capsaicin has been reported (105202).
Inhalation of capsicum and exposure to capsicum oleoresin spray can cause cough, dyspnea, pain in the nasal passages, sneezing, rhinitis, and nasal congestion (5885,15016,40522,40546,40647). In rare cases, inhalation of the capsicum oleoresin or pepper spray has caused cyanosis, apnea, respiratory arrest and death in people. Death was caused by asphyxiation probably due to acute laryngeal edema and bronchoconstriction from inhalation of the capsicum oleoresin spray (40546,40672,40837,40879).
In a case report, a 47-year-old female who was exposed to capsaicin gas for more than 20 minutes experienced acute cough, shortness of breath, short-term chest pain, wheezing, and difficulty breathing for months afterwards (92980). In rare cases, exposure to capsicum oleoresin spray resulted in apnea, pulmonary injury, cyanosis, and even respiratory arrest (40383,40546).
General
...Orally, intravenously, ophthalmologically, and by inhalation, coleus seems to be well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, nausea, vomiting.
Intravenously: Flushing, hypotension, tachycardia.
Ophthalmologically: Conjunctival hyperemia, stinging eyes.
Inhalation: Irritation of the respiratory tract, restlessness, tremor.
Cardiovascular ...Intravenously, the coleus constituent, forskolin, can cause tachycardia, flushing and hypotension (7279,44424,44431).
Dermatologic ...Two cases of contact dermatitis have been reported following airborne exposure to coleus (44426,44418).
Gastrointestinal ...Orally, coleus can cause dose-related diarrhea and other gastrointestinal symptoms. Increased bowel movements and loose stools have been reported in 1 of 15 patients taking coleus extract in a clinical trial (91885). Some retrospective evidence reports about a 10% rate of gastrointestinal adverse effects from oral coleus use; 81% of these adverse effects were related to diarrhea. Other reported adverse effects which occurred at a much lower rate, include nausea, vomiting, and/or constipation. Gastrointestinal effects appear to be dose-related; those taking less than 250 mg of coleus extract did not report any diarrhea, while all patients taking 1000 mg of coleus extract reported diarrhea (100851).
Neurologic/CNS ...Inhalation of forskolin, a constituent of coleus, can cause tremor and restlessness (7281).
Ocular/Otic ...Ophthalmologically, forskolin, a constituent of coleus, can cause stinging of the eyes and conjunctival hyperemia (7283).
Pulmonary/Respiratory ...Inhalation of forskolin, a constituent of coleus, can cause throat and upper respiratory tract irritation, and mild to moderate cough (7281).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General ...Orally, green coffee appears to be well-tolerated. Although green coffee contains caffeine, it is present in small quantities which are less likely to cause adverse effects. Green coffee contains about 20-50 mg caffeine per cup, compared with about 100 mg caffeine per cup of brewed coffee.
Cardiovascular
...Although acute administration of caffeine, a constituent of green coffee, can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722,13739).
Drinking one or more cups daily of caffeinated coffee, such as green coffee, also doesn't seem to increase the risk of developing hypertension in habitual coffee drinkers (8033,13739).
Chlorogenic acids found in green coffee extracts may adversely affect plasma homocysteine levels. In one randomized controlled trial, 2 grams of chlorogenic acids (the amount found in about 1.5 L of strong coffee) daily for one week resulted in a 12% increase in plasma homocysteine levels (8035). However, in another trial of green coffee extract in a dose equivalent to 140 mg of chlorogenic acids daily for 4 months, there was a slight decrease in plasma homocysteine levels from baseline, but this did not differ significantly from placebo treatment (17970).
The diterpenes cafestol and kahweol found in green coffee beans have been implicated in the hypercholesterolemic effects of unfiltered coffee (19336,53599). However, these compounds are removed from some green coffee extracts. For instance, Svetol (Naturex, South Hackensack, NJ) is reported to contain less than 4 ppm of cafestol and kahweol (88171).
Dermatologic ...Positive skin tests and symptoms of contact allergy have been reported in workers exposed to green coffee bean dust (53568,53653).
Endocrine
...Some evidence shows that caffeine, a constituent of green coffee, is associated with fibrocystic breast disease, breast cancer, and endometriosis in females; however, this is controversial since findings are conflicting (8043).
Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that increased consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Orally, stomach irritation was reported by one person in a clinical trial of green coffee extract (104831).
Musculoskeletal ...Epidemiological evidence regarding the relationship between caffeine, which is found in green coffee, and the risk of osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk of the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg per day, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS ...Orally, dizziness was reported by one person in a clinical trial of green coffee extract (104831).
Ocular/Otic ...Conjunctivitis caused by green coffee bean dust in coffee workers has been described in case reports (53657,53589).
Psychiatric ...Chronic use of caffeine, especially in large amounts, may produce tolerance, habituation, and psychological dependence (3719). Abrupt discontinuation of caffeine may result in physical withdrawal symptoms, including headache, fatigue, drowsiness, decreased physical energy, difficulty concentrating, depression, anxiety, irritability, and reduced alertness (13738). Certain populations such as children and the elderly may be more susceptible to the adverse effects of caffeine (13736).
Pulmonary/Respiratory ...Occupational exposure to green coffee beans has been documented to cause numerous adverse respiratory reactions, including bronchial reactivity, asthma, and rhinitis (53589,53641,53644,53648,53650,53665). Healthy subjects exposed experimentally to green coffee dust displayed acute decreases in expiratory flow rates (53653). In one study, green coffee workers displayed numerous acute respiratory symptoms when exposed to dust; these included coughing, increased sputum, sneezing, difficulty in breathing, running nose, and wheezing; these symptoms resolved after leaving work (53647).
General
...Orally, a thorough evaluation of safety outcomes for raspberry ketone has not been conducted.
Structurally, raspberry ketone resembles synephrine, a known stimulant agent.
Cardiovascular ...Structurally, raspberry ketone resembles synephrine, a known stimulant agent. Although not well studied in humans, stimulant-related side effects are possible. Orally, cases of heart palpitations, tachycardia, elevated blood pressure, coronary vasospasm are reported after taking raspberry ketone (17961,112386,112400). In one case report, pulseless electrical activity arrest followed by resistant polymorphic ventricular tachycardia occurred in a patient taking raspberry ketone. The arrhythmia resolved after numerous defibrillation shocks and placement of a temporary transvenous pacemaker with overdrive pacing (112386). In another case report, 5 episodes of ST elevation occurred over 2 days following ingestion of raspberry ketone (112400).
Neurologic/CNS ...Structurally, raspberry ketone resembles synephrine, a known stimulant agent. Although not well studied in humans, stimulant-related side effects are possible. Two case reports describe symptoms of sweating, diarrhea, and feelings of shakiness after oral use of raspberry ketone (17961,112400).
General ...Orally, threonine seems to be well tolerated.
Dermatologic ...Orally, skin rash has been reported in people who have taken threonine (681).
Gastrointestinal ...Orally, some patients can experience minor gastrointestinal upset including diarrhea (12056). Other side effects reported in people who have taken threonine include flatus and constipation (681).
Neurologic/CNS ...Orally, headache has been reported in people who have taken threonine (681).
Pulmonary/Respiratory ...Orally, rhinorrhea has been reported in people who have taken threonine (681).
Other ...Orally, a two-fold increase in serum ammonia levels occurred in one patient following administration of threonine 4 grams daily (681).
General
...Orally, tyrosine seems to be well tolerated.
No serious adverse effects have been documented; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Fatigue, headache, heartburn, and nausea.
Gastrointestinal ...Orally, tyrosine can cause nausea and heartburn when taken at a dose of 150 mg/kg (7211). Taking tyrosine 4 grams daily in combination with 5-hydroxytryptophan 800 mg and carbidopa 100 mg can cause diarrhea, nausea, and vomiting. These effects can be mitigated by lowering the dosage (918).
Musculoskeletal ...Orally, larger doses of tyrosine (150 mg/kg) can cause arthralgia, but this is uncommon (7211).
Neurologic/CNS ...Orally, larger doses of tyrosine (150 mg/kg) can cause headache and fatigue (7211). Taking a combination of tyrosine 4 grams, 5-hydroxytryptophan 800 mg, and carbidopa 100 mg can cause drowsiness and agitation. These effects can be mitigated by lowering the dosage (918).