Ingredients | Amount Per Serving |
---|---|
(Na)
(Capsorb)
|
4.9 mg |
2500 mg | |
(Lepidium meyenil )
(root)
|
1500 mg |
(Trigonella foenum-graecum )
(seed)
|
1000 mg |
(Panax ginseng )
|
1000 mg |
(Urtica dioica )
(root)
|
1000 mg |
(Bulbine natalensis )
(1:1)
|
600 mg |
Black Ginger Root Extract
(Zingiber officinale )
(root)
|
300 mg |
(Cinnamomum burmannii, Powder)
|
300 mg |
(Rhodiola rosea )
(Rosavins)
(std. to 5% rosavins)
|
150 mg |
(Turnera diffusa var. aphrodisiaca)
(Turnera aphrodisiaca)
|
100 mg |
(DHEA)
|
50 mg |
(Yohimbine HCl)
|
2 mg |
Natural & Artificial Flavors, Citric Acid, Malic Acid, Sucralose, Acesulfame Potassium (Alt. Name: Acesulfame K)
Below is general information about the effectiveness of the known ingredients contained in the product Exalt Mixed Berries. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Exalt Mixed Berries. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is insufficient reliable information available about the safety of Bulbine natalensis when used orally or topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally in large amounts.
Animal research shows that Bulbine natalensis stem extract might be embryotoxic when administered at a dose of 100 mg/kg (91624). Until more is known about its effects in humans, avoid using during pregnancy.
There is insufficient reliable information about the safety of using topical Bulbine natalensis during pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when consumed in amounts commonly found in foods. Cassia cinnamon has Generally Recognized As Safe (GRAS) status in the US for use as a spice or flavoring agent (4912) ...when used orally and appropriately, short-term. Cassia cinnamon up to 2 grams daily has been used safely for up to 3 months (17011,21914). Cassia cinnamon 3-6 grams daily has been used safely for up to 6 weeks (11347,14344). Cassia cinnamon extract corresponding to 3 grams daily of cassia cinnamon powder has also been used safely for up to 4 months (21916).
POSSIBLY SAFE ...when used topically, short-term. Cassia cinnamon oil 5% cream applied topically to the legs has been used safely in one clinical trial (59580).
POSSIBLY UNSAFE ...when used orally in high doses, long-term. Some cassia cinnamon products contain high levels of coumarin. Coumarin can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg daily can result in hepatotoxicity that resolves when coumarin use is discontinued (15302). In most cases, ingestion of cassia cinnamon will not provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Cassia cinnamon 1 gram daily has been used safely in adolescents 13-18 years of age for up to 3 months (89648).
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of cassia cinnamon when used in medicinal amounts during pregnancy and breast-feeding. Stay on the safe side and stick to food amounts.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Damiana has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12,46933,11866).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Most studies have been small and lasted from a few weeks to 6 months, with usual doses of 50 mg daily (793,1635,2133,3231,4249,4251,4252,4253,4254,4255,9691)(9692,10986,12215,12564,14277,21416,88726,90304,99925). Some studies have also used oral DHEA with apparent safety for 12-24 months (2113,6446,10406,11464,12561,15027,88492). ...when used intravaginally and appropriately. Intravaginal ovules of DHEA 3.25 mg to 13 mg have been safely used for up to 12 weeks (21320,21429,21430). ...when used topically and appropriately. A DHEA cream 1% to 10% has been safely used for up to 12 months (4242,21428).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. There is concern that long-term use or use of amounts that cause higher than normal physiological DHEA levels might increase the risk of prostate cancer (2111,12565), breast cancer (10370,10401,10403), or other hormone-sensitive cancers (6445). In some cases, 50-100 mg daily can produce slightly higher than normal physiological DHEA levels (4249,4251). There is insufficient reliable information available about the safety of using DHEA intravenously or intramuscularly.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally.
DHEA can cause higher than normal androgen levels (2133,4249,4251,4253), which might adversely affect pregnancy or a nursing infant.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fenugreek has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the seed is used orally in medicinal amounts. Fenugreek seed powder 5-10 grams daily has been used with apparent safety for up to 3 years. Fenugreek seed extract 1 gram daily has been used with apparent safety for up to 3 months (7389,9783,18359,18362,49868,90112,90113,90117,93419,93420)(93421,93422,93423,96065,103285,108704).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of fenugreek when used in larger amounts. Unusual body and urine odor has been reported after consumption of fenugreek tea. Although the odor appears to be harmless, it may be misdiagnosed as maple syrup urine disease (9782,96068).
PREGNANCY: LIKELY UNSAFE
when used orally in amounts greater than those found in food.
Fenugreek has potential oxytoxic and uterine stimulant activity (12531). There are case reports of congenital malformations, including hydrocephalus, anencephaly, cleft palate, and spina bifida, after consumption of fenugreek seeds during pregnancy (96068). Consumption of fenugreek immediately prior to delivery may cause the neonate to have unusual body odor. Although this does not appear to cause long-term sequelae, it may be misdiagnosed as maple syrup urine disease (9781,96068).
LACTATION: POSSIBLY SAFE
when used orally to stimulate lactation, short-term.
Although most available clinical studies lack safety testing in the lactating parent or infant (12535,22569,22570), some evidence suggests that taking fenugreek 1725 mg three times daily orally for 21 days does not cause negative side effects in the infant (90115).
POSSIBLY SAFE ...when used orally and appropriately. L-arginine has been used safely in clinical studies at doses of up to 24 grams daily for up to 18 months (3331,3460,3595,3596,5531,5532,5533,6028,7815,7816)(8014,8473,13709,31943,91195,91196,91963,99264,99267,110380)(110387). A tolerable upper intake level (UL) for arginine has not been established, but the observed safe level (OSL) of arginine intake established in clinical research is 20 grams (31996). ...when used intravenously and appropriately. Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically and appropriately. L-arginine appears to be safe when 5 grams is applied as a topical cream twice daily for 2 weeks or when a dentifrice is used at a dose of 1.5% w/w for up to 2 years (14913,96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks (96807).
CHILDREN: POSSIBLY SAFE
when used orally in premature infants and children (8474,32286,96803,97392,110391).
...when used intravenously and appropriately (97392). Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically, short-term. A dentifrice containing L-arginine appears to be safe when used at a dose of 1.5% w/w for up to 2 years in children at least 3.7 years of age (96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks in children at least 13 years of age (96807).
CHILDREN: POSSIBLY UNSAFE
when used intravenously in high doses.
Parenteral L-arginine is an FDA-approved prescription product (15). However, when higher than recommended doses are used, injection site reactions, hypersensitivity reactions, hematuria, and death have occurred in children (16817).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
L-arginine 12 grams daily for 2 days has been used with apparent safety in pregnancy during the third trimester (11828). L-arginine 3 grams daily has been taken safely during the second and/or third trimesters (31938,110379,110382). ...when used intravenously and appropriately, short-term. Intravenous L-arginine 20-30 grams daily has been used safely in pregnancy for up to 5 days (31847,31933,31961,31978).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when maca is consumed in food amounts (9926).
POSSIBLY SAFE ...when used orally and appropriately, short term. Maca appears to be safe in doses up to 3 grams daily for 4 months (9928,10218,18289,90278,108603).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Panax ginseng seems to be safe when used for up to 6 months (8813,8814,17736,89741,89743,89745,89746,89747,89748,103044)(103477,114980,114981,114984,114985). Panax ginseng sprout extract has also been used with apparent safety in doses up to 450 mg daily for up to 12 weeks (114983).
POSSIBLY UNSAFE ...when used orally, long-term. There is some concern about the long-term safety due to potential hormone-like effects, which might cause adverse effects with prolonged use (12537). Tell patients to limit continuous use to less than 6 months. There is insufficient reliable information available about the safety of Panax ginseng when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in infants.
Use of Panax ginseng in newborns is associated with intoxication that can lead to death (12). There is limited reliable information available about use in older children (24109,103049); avoid using.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Ginsenoside Rb1, an active constituent of Panax ginseng, has teratogenic effects in animal models (10447,24106,24107); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. There is some clinical research showing that taking rhodiola extract up to 300 mg twice daily has been used without adverse effects for up to 12 weeks (13109,16410,17616,71172,96459,102283,103269).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
POSSIBLY SAFE ...when used orally and appropriately. Stinging nettle root 360-600 mg has been used safely for up to 1 year (5093,11230,15195,76406,96744). ...when used topically and appropriately (12490).
PREGNANCY: LIKELY UNSAFE
when used orally due to possible abortifacient and uterine-stimulant effects (4,6,19).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY UNSAFE ...when used orally. Yohimbine, a constituent of yohimbe, has been associated with serious adverse effects including cardiac arrhythmia, agitation, myocardial infarction, seizure, and others (17465). Some research shows that yohimbine can be safely used under close medical supervision for up to 10 weeks (3305,3307,3311,3313). However, due to safety concerns, yohimbe should not be used without medical supervision.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally.
Yohimbe might have uterine relaxant effects and also cause fetal toxicity (19).
Below is general information about the interactions of the known ingredients contained in the product Exalt Mixed Berries. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, combining Bulbine natalensis leaf with drugs that have anticoagulant or antiplatelet activity might increase the risk of bruising and bleeding.
In vitro research shows that Bulbine natalensis ground leaf extract inhibits platelet aggregation (91620).
|
Theoretically, Bulbine natalensis stem might reduce the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that Bulbine natalensis stem extract slightly induces CYP1A2 mRNA expression and enzyme activity (108669). Theoretically, this may increase the metabolism of CYP1A2 substrates; however, this has not been studied in humans.
|
Theoretically, Bulbine natalensis stem might reduce the levels and clinical effects of CYP2C9 substrates.
In vitro research shows that Bulbine natalensis stem extract induces CYP2C9 mRNA expression and enzyme activity (108671). Theoretically, this may increase the metabolism of CYP2C9 substrates; however, this has not been studied in humans.
|
Theoretically, Bulbine natalensis stem might reduce the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that Bulbine natalensis stem extract induces CYP3A4 mRNA expression and enzyme activity (108671). Theoretically, this may increase the metabolism of CYP3A4 substrates, but this has not been studied in humans.
|
Theoretically, Bulbine natalensis stem might increase the risk of adverse effects and toxicity when taken with digoxin.
Bulbine natalensis stem may contain cardiac glycosides (91617), although it is unclear if these chemicals are present in clinically relevant concentrations.
|
Theoretically, Bulbine natalensis stem might increase the levels and clinical effects of p-glycoprotein substrates.
In vitro research shows that Bulbine natalensis stem extract induces p-glycoprotein mRNA expression; however, effects on transporter expression were not evaluated (108669).
|
Theoretically, using Bulbine natalensis stem with testosterone replacement therapy might increase the risk of adverse effects.
|
Theoretically, cassia cinnamon may have additive effects with antidiabetes drugs.
|
Theoretically, large doses of cassia cinnamon might cause additive effects when used with hepatotoxic drugs.
There is some concern that ingesting large amounts of cassia cinnamon for an extended duration might cause hepatotoxicity in some people. Cassia cinnamon contains coumarin, which can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin use is discontinued (15302,97249). Lower amounts might also cause liver problems in sensitive people, such as those with liver disease or those taking potentially hepatotoxic agents.
|
Theoretically, taking damiana with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, DHEA might increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, DHEA might increase the risk of psychiatric adverse events when used with antidepressants.
In a human case report, the use of a selective serotonin reuptake inhibitor (SSRI) with DHEA caused a manic episode (7023). Concern for this interaction may be greater in younger individuals with higher baseline DHEA levels.
|
Theoretically, DHEA might interfere with the clinical effects of aromatase inhibitors.
DHEA is a potent estrogen agonist, which may antagonize the anti-estrogen activity of aromatase inhibitors (10401).
|
Theoretically, DHEA might increase the levels of drugs metabolized by CYP3A4.
Some preliminary evidence shows that DHEA may inhibit CYP3A4 (1389); however, the clinical significance of this potential interaction is not known.
|
Theoretically, DHEA might increase the effects and adverse effects of estrogen therapy.
DHEA is a precursor to estrogen and androgen and is metabolized into those substances. In clinical research, DHEA supplements increase the levels of these hormones (6012,7614,8593,10986,12651,12564,15027,21321,21323,21324)(21325,21326,21327,21328,21330,21331,21356,21364,21389,21393)(21397,21398,21417,21419,21427,47273,47348,88375,90304). Also, in clinical research, estrogen-progestin oral contraceptives and conjugated estrogens reduce blood levels of DHEA and DHEA-S (21372,21373,21374,21437,21438). The clinical significance of these findings is unclear.
|
Theoretically, DHEA might interfere with the anti-estrogen effects of fulvestrant.
|
Theoretically, DHEA might interfere with the anti-estrogen effects of tamoxifen.
|
Theoretically, DHEA might increase the effects and side effects of testosterone therapy.
DHEA is a precursor to estrogen and androgen and is metabolized into those substances. In clinical research, DHEA supplements increase the levels of these hormones (6012,7614,8593,10986,12651,12564,15027,21321,21323,21324)(21325,21326,21327,21328,21330,21331,21356,21364,21389,21393)(21397,21398,21417,21419,21427,47273,47348,88375,90304,99924,99925,104162). The clinical significance of these findings is unclear.
|
DHEA can increase blood levels of triazolam.
Administration of DHEA 200 mg daily for two weeks was shown to inhibit the cytochrome P450 3A4 (CYP3A4) metabolism of triazolam. This inhibition appears to be due to DHEA-S, rather than DHEA (1389).
|
DHEA might reduce the effectiveness of the tuberculosis vaccine.
Animal research shows that high doses of DHEA can reduce the efficacy of the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine (21316).
|
Theoretically, fenugreek might have additive effects when used with anticoagulant or antiplatelet drugs.
Some of the constituents in fenugreek have antiplatelet effects in animal and in vitro research. However, common fenugreek products might not contain sufficient concentrations of these constituents for clinical effects. A clinical study in patients with coronary artery disease or diabetes shows that taking fenugreek seed powder 2.5 grams twice daily for 3 months does not affect platelet aggregation, fibrinolytic activity, or fibrinogen levels (5191,7389,49643).
|
Theoretically, fenugreek seed might have additive hypoglycemic effects when used with antidiabetes drugs.
|
Theoretically, fenugreek seed might alter the clinical effects of clopidogrel by inhibiting its conversion to the active form.
Animal research shows that fenugreek seed 200 mg/kg daily for 14 days increases the maximum serum concentration of clopidogrel by 21%. It is unclear how this affects the pharmacokinetics of the active metabolite of clopidogrel; however, this study found that concomitant use of fenugreek seed and clopidogrel prolonged bleeding time by an additional 11% (108701).
|
Theoretically, fenugreek seed might have additive hypotensive effects when used with metoprolol.
Animal research shows that fenugreek seed 300 mg/kg daily for 2 weeks decreases systolic and diastolic blood pressure by 9% and 11%, respectively, when administered alone, and by 15% and 22%, respectively, when given with metoprolol 10 mg/kg (108703).
|
Theoretically, fenugreek might decrease plasma levels of phenytoin.
Animal research shows that taking fenugreek seeds for 1 week decreases maximum concentrations and the area under the curve of a single dose of phenytoin by 44% and 72%, respectively. This seems to be related to increased clearance (110905). So far, this interaction has not been reported in humans.
|
Theoretically, concurrent use of sildenafil and fenugreek might reduce levels and therapeutic effects of sildenafil.
Animal research shows that taking fenugreek seeds for 1 week reduces maximum concentrations and the area under the curve of a single dose of sildenafil by 27% and 48%, respectively (110898). So far, this interaction has not been reported in humans.
|
Theoretically, fenugreek may reduce the levels and clinical effects of theophylline.
Animal research shows that fenugreek 50 grams daily for 7 days reduces the maximum serum concentration (Cmax) of theophylline by 28% and the area under the plasma drug concentration-time curve (AUC) by 22% (90118).
|
Theoretically, fenugreek might have additive effects with warfarin and increase the international normalized ratio (INR).
|
Theoretically, concomitant use of L-arginine and ACE inhibitors may increase the risk for hypotension and hyperkalemia.
Combining L-arginine with some antihypertensive drugs, especially ACE inhibitors, seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916). Furthermore, ACE inhibitors can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ACE inhibitors with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine and ARBs may increase the risk of hypotension and hyperkalemia.
L-arginine increases nitric oxide, which causes vasodilation (7822). Combining L-arginine with ARBs seems to increase L-arginine-induced vasodilation (31854). Furthermore, ARBs can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ARBs with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine with anticoagulant and antiplatelet drugs might have additive effects and increase the risk of bleeding.
|
Theoretically, concomitant use of L-arginine might have additive effects with antidiabetes drugs.
|
Theoretically, concomitant use of L-arginine and antihypertensive drugs may increase the risk of hypotension.
L-arginine increases nitric oxide, which causes vasodilation (7822). Clinical evidence shows that L-arginine can reduce blood pressure in some individuals with hypertension (7818,10636,31871,32201,32167,32225,31923,32232,110383,110384). Furthermore, combining L-arginine with some antihypertensive drugs seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916).
|
Theoretically, concurrent use of isoproterenol and L-arginine might result in additive effects and hypotension.
Preliminary clinical evidence suggests that L-arginine enhances isoproterenol-induced vasodilation in patients with essential hypertension or a family history of essential hypertension (31932).
|
Theoretically concomitant use of potassium-sparing diuretics with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concurrent use of sildenafil and L-arginine might increase the risk for hypotension.
In vivo, concurrent use of L-arginine and sildenafil has resulted in increased vasodilation (7822,8015,10636). Theoretically, concurrent use might have additive vasodilatory and hypotensive effects. However, in studies evaluating the combined use of L-arginine and sildenafil for erectile dysfunction, hypotension was not reported (105065).
|
Theoretically, concomitant use of L-arginine and testosterone might have additive effects.
|
Although Panax ginseng has shown antiplatelet effects in the laboratory, it is unlikely to increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
In vitro evidence suggests that ginsenoside constituents in Panax ginseng might decrease platelet aggregation (1522,11891). However, research in humans suggests that ginseng does not affect platelet aggregation (11890). Animal research indicates low oral bioavailability of Rb1 and rapid elimination of Rg1, which might explain the discrepancy between in vitro and human research (11153). Until more is known, use with caution in patients concurrently taking anticoagulant or antiplatelet drugs.
|
Theoretically, taking Panax ginseng with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Monitor blood glucose levels closely.
|
Theoretically, taking Panax ginseng with caffeine might increase the risk of adverse stimulant effects.
|
Theoretically, Panax ginseng might decrease levels of drugs metabolized by CYP1A1.
In vitro research shows that Panax ginseng can induce the CYP1A1 enzyme (24104).
|
Theoretically, Panax ginseng might increase levels of drugs metabolized by CYP2D6. However, research is conflicting.
There is some evidence that Panax ginseng can inhibit the CYP2D6 enzyme by approximately 6% (1303,51331). In addition, in animal research, Panax ginseng inhibits the metabolism of dextromethorphan, a drug metabolized by CYP2D6, by a small amount (103478). However, contradictory research suggests Panax ginseng might not inhibit CYP2D6 (10847). Until more is known, use Panax ginseng cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, Panax ginseng might increase or decrease levels of drugs metabolized by CYP3A4.
Panax ginseng may affect the clearance of drugs metabolized by CYP3A4. One such drug is imatinib. Inhibition of CYP3A4 was believed to be responsible for a case of imatinib-induced hepatotoxicity (89764). In contrast, Panax ginseng has been shown to increase the clearance of midazolam, another drug metabolized by CYP3A4 (89734,103478). Clinical research shows that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478). Until more is known, use Panax ginseng cautiously in combination with CYP3A4 substrates.
|
Theoretically, concomitant use of large amounts of Panax ginseng might interfere with hormone replacement therapy.
|
Theoretically, Panax ginseng might decrease blood levels of oral or intravenous fexofenadine.
Animal research suggests that taking Panax ginseng in combination with oral or intravenous fexofenadine may reduce the bioavailability of fexofenadine. Some scientists have attributed this effect to the ability of Panax ginseng to increase the expression of P-glycoprotein (24101).
|
Theoretically, Panax ginseng might reduce the effects of furosemide.
There is some concern that Panax ginseng might contribute to furosemide resistance. There is one case of resistance to furosemide diuresis in a patient taking a germanium-containing ginseng product (770).
|
Theoretically, Panax ginseng might increase the effects and adverse effects of imatinib.
A case of imatinib-induced hepatotoxicity has been reported for a 26-year-old male with chronic myelogenous leukemia stabilized on imatinib for 7 years. The patient took imatinib 400 mg along with a Panax ginseng-containing energy drink daily for 3 months. Since imatinib-associated hepatotoxicity typically occurs within 2 years of initiating therapy, it is believed that Panax ginseng affected imatinib toxicity though inhibition of cytochrome P450 3A4. CYP3A4 is the primary enzyme involved in imatinib metabolism (89764).
|
Theoretically, Panax ginseng use might interfere with immunosuppressive therapy.
Panax ginseng might have immune system stimulating properties (3122).
|
Theoretically, taking Panax ginseng with insulin might increase the risk of hypoglycemia.
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Insulin dose adjustments might be necessary in patients taking Panax ginseng; use with caution.
|
Although Panax ginseng has demonstrated variable effects on cytochrome P450 3A4 (CYP3A4), which metabolizes lopinavir, Panax ginseng is unlikely to alter levels of lopinavir/ritonavir.
Lopinavir is metabolized by CYP3A4 and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Panax ginseng has shown variable effects on CYP3A4 activity in humans (89734,89764). However, taking Panax ginseng (Vitamer Laboratories) 500 mg twice daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in 12 healthy volunteers (93578).
|
Theoretically, Panax ginseng may increase the clearance of midazolam.
Midazolam is metabolized by cytochrome P450 3A4 (CYP3A4). Clinical research suggests that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478).
|
Theoretically, Panax ginseng can interfere with MAOI therapy.
|
Theoretically, taking Panax ginseng with nifedipine might increase serum levels of nifedipine and the risk of hypotension.
Preliminary clinical research shows that concomitant use can increase serum levels of nifedipine in healthy volunteers (22423). This might cause the blood pressure lowering effects of nifedipine to be increased when taken concomitantly with Panax ginseng.
|
Theoretically, Panax ginseng has an additive effect with drugs that prolong the QT interval and potentially increase the risk of ventricular arrhythmias. However, research is conflicting.
|
Theoretically, taking Panax ginseng with raltegravir might increase the risk of liver toxicity.
A case report suggests that concomitant use of Panax ginseng with raltegravir can increase serum levels of raltegravir, resulting in elevated liver enzymes levels (23621).
|
Theoretically, Panax ginseng might increase or decrease levels of selegiline, possibly altering the effects and side effects of selegiline.
Animal research shows that taking selegiline with a low dose of Panax ginseng extract (1 gram/kg) reduces selegiline bioavailability, while taking a high dose of Panax ginseng extract (3 grams/kg) increases selegiline bioavailability (103053). More research is needed to confirm these effects.
|
Theoretically, taking Panax ginseng with stimulant drugs might increase the risk of adverse stimulant effects.
|
Panax ginseng might affect the clearance of warfarin. However, this interaction appears to be unlikely.
There has been a single case report of decreased effectiveness of warfarin in a patient who also took Panax ginseng (619). However, it is questionable whether Panax ginseng was the cause of this decrease in warfarin effectiveness. Some research in humans and animals suggests that Panax ginseng does not affect the pharmacokinetics of warfarin (2531,11890,17204,24105). However, other research in humans suggests that Panax ginseng might modestly increase the clearance of the S-warfarin isomer (15176). More evidence is needed to determine whether Panax ginseng causes a significant interaction with warfarin.
|
Theoretically, taking rhodiola with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking rhodiola with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, rhodiola might increase levels of drugs metabolized by CYP1A2.
In vitro research shows that rhodiola inhibits CYP1A2. This effect is highly variable and appears to be dependent on the rhodiola product studied (96461). However, a clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days does not inhibit the metabolism of caffeine, a CYP1A2 substrate (96463).
|
Theoretically, rhodiola might increase levels of drugs metabolized by CYP2C9.
In vitro research shows that rhodiola inhibits CYP2C9. This effect is highly variable and appears to be dependent on the rhodiola product studied (96461). Also, a clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days reduces the metabolism of losartan, a CYP2C9 substrate, by 21% after 4 hours (96463).
|
Theoretically, rhodiola might increase levels of drugs metabolized by CYP3A4.
In vitro research shows that rhodiola inhibits CYP3A4 (19497,96461). This effect is highly variable and appears to be dependent on the rhodiola product studied (96461). However, a clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days does not inhibit the metabolism of midazolam, a CYP3A4 substrate (96463).
|
Theoretically, rhodiola use might interfere with immunosuppressive therapy.
|
Rhodiola might increase the levels and adverse effects of losartan.
A clinical study in healthy young males found that taking rhodiola extract 290 mg daily for 14 days reduces the metabolism of losartan, a CYP2C9 substrate, by 21% after 4 hours (96463).
|
Theoretically, rhodiola might increase levels of P-glycoprotein substrates.
In vitro research shows that rhodiola inhibits P-glycoprotein (19497). Theoretically, using rhodiola with P-glycoprotein substrates might increase drug levels and potentially increase the risk of adverse effects.
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, stinging nettle might have additive effects with antidiabetes drugs.
|
Theoretically, combining stinging nettle with diuretic drugs may have additive effects.
|
Theoretically, stinging nettle might reduce excretion and increase levels of lithium.
Animal research suggests that stinging nettle has diuretic and natriuretic properties, which could alter the excretion of lithium (76402). The dose of lithium might need to be decreased.
|
There is some concern that stinging nettle might decrease the effects of anticoagulant drugs such as warfarin.
Stinging nettle contains a significant amount of vitamin K (19). When taken in large quantities, this might interfere with the activity of warfarin.
|
Theoretically, combining yohimbe bark with antiplatelet or anticoagulant drugs might have additive effects; however, this has not been reported in clinical research.
Research in healthy adults shows that taking yohimbine, a constituent of yohimbe bark, in doses of 8 mg or more, seems to inhibit platelet aggregation in vitro by binding to the alpha-2 adrenoceptor (86773,86806,86835,86853). The effects of yohimbe bark itself are unclear; yohimbe bark contains 0.6% to 1.38% yohimbine, but it is unclear how much is absorbed (86862,89263).
|
Theoretically, yohimbe might reduce the effects of antihypertensive drugs.
|
Theoretically, yohimbe might precipitate clonidine withdrawal.
Chronic clonidine use can downregulate alpha-2 adrenoreceptors. Animal research and one human case report suggest that concomitant administration of yohimbine, an alpha-2 adrenoceptor antagonist, may precipitate clonidine withdrawal and lead to sympathomimetic toxicity, including hypertensive crisis (111406).
|
Theoretically, yohimbe might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that yohimbe extract induces CYP1A2 enzymes (111404).
|
CYP2D6 inhibitors may increase the levels and adverse effects of yohimbine, a constituent of yohimbe.
In vitro and clinical research shows that the yohimbe bark constituent, yohimbine, is metabolized by CYP2D6 isoenzymes (105688,105697,105698). Paroxetine, a cytochrome P450 (CYP) 2D6 inhibitor, increases the maximum serum concentration of yohimbine and reduces the clearance of yohimbine compared to yohimbine alone in patients who are extensive CYP2D6 metabolizers. (114932).
|
Theoretically, yohimbe might increase the levels and adverse effects of CYP2D6 substrates.
In vitro research suggests that yohimbine, a constituent of yohimbe bark, inhibits CYP2D6 enzyme activity (23117).
|
Theoretically, CYP3A4 inhibitors might increase the levels and adverse effects of yohimbine, a constituent of yohimbe bark.
|
Theoretically, yohimbe might decrease the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that yohimbe extract induces CYP3A4 enzymes (111404).
|
Concomitant use of MAOIs with yohimbe can result in additive effects.
|
Paroxetine decreases the clearance of yohimbine and may increase its effects.
Paroxetine, a cytochrome P450 (CYP) 2D6 inhibitor, increases the maximum serum concentration of yohimbine by about 350% and reduces the clearance of yohimbine by about 80% compared to yohimbine alone in patients who are extensive CYP2D6 metabolizers. No significant changes in pharmacokinetic parameters of yohimbine were observed with coadministration of paroxetine in patients who are poor CYP2D6 metabolizers (114932).
|
Theoretically, using yohimbine with phenothiazines might have additive effects.
Yohimbine, a constituent of yohimbe, has alpha-2 adrenergic antagonist effects. Theoretically, combining it with phenothiazines can cause additive alpha-2 adrenergic antagonism (19).
|
Theoretically, taking yohimbe with stimulant drugs can have additive effects.
|
Theoretically, taking yohimbe with TCAs can increase adverse effects.
A small clinical study in patients taking TCAs for at least 4 weeks shows that receiving doses of intravenous yohimbine 2.5-20 mg daily for up to 7 days precipitates severe anxiety, agitation, and tremor (105881). The effects of yohimbe bark itself are unclear; oral yohimbe bark contains 0.6% to 1.38% yohimbine, but it is unclear how much is absorbed (86862,89263).
|
Below is general information about the adverse effects of the known ingredients contained in the product Exalt Mixed Berries. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Other ...Analysis of Bulbine natalensis root obtained from open street markets in South Africa shows that the plant root might contain high levels of aluminum (5559 mg/kg dry weight) and iron (4164 mg/kg dry weight). Theoretically, ingestion of plants containing this quantity of aluminum might impair cognitive function and lead to neurodegenerative diseases. Ingestion of plants containing this quantity of iron might cause gastric discomfort, nausea, vomiting, diarrhea, and/or perforation of the gut wall (91621).
General
...Orally, cassia cinnamon appears to be well-tolerated.
Significant side effects have not been reported in most patients.
Most Common Adverse Effects:
Topically: Burning mouth, stomatitis.
Dermatologic
...In one clinical trial, a rash was reported in one patient taking cassia cinnamon 1 gram daily for 90 days (17011).
In one case, a 58-year-old female with a documented allergy to topically applied cinnamic alcohol presented with eyelid dermatitis, which was found to be a manifestation of systemic contact dermatitis to cinnamon in the diet. Symptoms improved in two days and completely cleared five days after discontinuing the addition of cinnamon to food products (95599). In other case reports, two adults presented with allergic contact cheilitis following the ingestion of chai tea with cinnamon and yogurt with cinnamon. Cinnamon components were confirmed as the causative allergic agents with patch tests, and both cases of allergic contact cheilitis completely resolved upon cessation of the cinnamon-containing products (113516,113515).
Topically, allergic skin reactions and stomatitis from toothpaste flavored with cassia cinnamon have been reported (11915,11920). Intraoral allergic reactions with symptoms of tenderness and burning sensations of the oral mucosa have also been reported in patients using breath fresheners, toothpaste, mouthwash, candy, or chewing gum containing cinnamon, cinnamic aldehyde or cinnamic alcohol as flavoring agents. Glossodynia, or burning mouth syndrome, has also been reported in a 62-year-old female who ate apples dipped in cinnamon nightly (95598), and allergic contact dermatitis has been reported in a teenage female using a homemade cinnamon sugar face scrub (95596).
Endocrine ...In one clinical trial, a hypoglycemic seizure was reported in one patient taking cassia cinnamon 1 gram daily for 3 months. The event occurred one day after enrolling in the study (89648). It is unclear if cassia cinnamon caused this event.
Hepatic ...There is some concern about the safety of ingesting large amounts of cassia cinnamon for extended durations due to its coumarin content. Coumarin can cause hepatotoxicity in animal models (15299). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin is discontinued (15302). In clinical trials, taking cassia cinnamon 360 mg to 12 grams daily for 3 months did not significantly increase levels of aspartate transaminase (AST) or alanine transaminase (ALT) (21918,96280,108259). However, in one case report, acute hepatitis with elevated AST and ALT occurred in a 73-year-old female who started taking a cinnamon supplement (dose unknown) one week prior to admission. The cinnamon supplement was added on to high-dose rosuvastatin, which may have led to additive adverse hepatic effects. After discontinuing both products, liver function returned to normal, and the patient was able to restart rosuvastati without further complications (97249). In most cases, ingestion of cassia cinnamon won't provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease or taking potentially hepatotoxic agents, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
Immunologic ...An unspecified allergic reaction was reported in one patient taking cassia cinnamon 1 gram daily for 3 months (89648).
General ...Orally, adverse effects to damiana seem to be rare; however, a thorough safety evaluation has not been conducted.
Neurologic/CNS ...Orally, 200 grams of damiana extract has caused tetanus-like convulsions and paroxysms resulting in symptoms similar to rabies or strychnine poisoning (4).
General
...Orally and topically, DHEA seems to be well tolerated when used in typical doses, short-term.
However, there is some concern that long-term oral use of DHEA may be linked to a greater risk for cancer.
Most Common Adverse Effects:
Orally: Acne, headache, insomnia, mood changes, and nausea. In females, masculinization symptoms including deepening of the voice, increased size of genitals, irregular menses, oily skin, reduced breast size, and unnatural hair growth. In males, aggression, breast tenderness or enlargement (gynecomastia), urinary urgency, and testicular wasting.
Serious Adverse Effects (Rare):
Orally: Possible increased risk for cardiovascular events and various types of cancer.
Cardiovascular ...Incidences of arrhythmia (21334,47540), chest pain (21332,21333), palpitations (21332,21333,88492), hypertension, and transient ischemic attacks (21353,21354,47300) have been reported. DHEA has also been found to decrease high-density lipoprotein (HDL) levels (21344,21345,21346,21347,21348,21349) and increase triglycerides (21334).
Dermatologic ...Acne has been the most commonly reported adverse effect in human research, particularly in females (2113,2114,4242,7614,7559,12561,12574,21346,21351,21354)(21355,21356,21357,21358,21360,21361,21362,21363,21364,47300)(47355,47409,90304,103185). However, it is generally mild and may be treated by reducing the dose (7559). Incidences of contact dermatitis (47402), acneiform dermatitis (2113), greasy hair and skin (17218,21351,21355,21363,21387,21389,47355), keratosis (47402), skin rash (12574,21361,21363), erythema (21334), scalp itching (17218,21357), and skin spots (21387) have also been reported. Increased hair growth and hirsutism have been noted in several clinical trials, including the development of mild mustache in females (2114,4242,12561,12574,17218,21346,21351,21354,21355,21358) (21361,21362,21363,21370,21387,21389,21415,47300). Increased perspiration and odor have also been reported in human research (17218,21354,21356,21357).
Endocrine ...In postmenopausal patients, high doses of DHEA (1600 mg daily) induced insulin resistance, reportedly due to increased androgen levels that occurred during supplementation (21324).
Gastrointestinal ...Gastrointestinal disturbances such as nausea, diarrhea, and abdominal discomfort have been noted in human research (2111,6098,7559,12574,21348,21358,21386).
Genitourinary ...In older adults, elevated and severe urinary symptoms (as evidenced by scores of more than 20, using the American Urological Association Symptom Index for Benign Prostatic Hyperplasia [International Prostate Symptom Score]) and urinary tract infection were reported (21353). Rare incidences of abnormal menses (2114) and increased discharge (21415) have been reported. DHEA has been associated with hematuria (47300).
Hepatic ...Elevated liver enzymes have been reported following DHEA supplementation (21364,47300). However, an analysis of multiple studies in varied patient populations taking DHEA supplements found no elevations in liver enzymes (107791).
Musculoskeletal ...Incidences of asthenia, arthralgia, and myalgia, including calf cramps, have been reported (12574,21354,21358,21365,47355).
Neurologic/CNS ...In humans, dizziness, fatigue, malaise, sleep disturbances, increased dreaming, night sweats, restlessness, "painful spots," and a crawling scalp sensation have been reported (3865,21354,21363,21389). There is a case of seizure associated with DHEA use in a 30 year-old female with fragile X syndrome and no history of convulsive disorder who used DHEA to try to improve ovarian production (47344).
Ocular/Otic ...In patients with Sjögren syndrome, maculae lesions, ocular pain and dryness, and painful eye exams have been reported (21358,21363,21365).
Oncologic ...Preclinical research suggests that DHEA may increase the risk of cancer, particularly prostate, liver, breast, and pancreatic cancers (2111,10370,10401,10403,12565,21332,21333,21334,47251,47256)(47366,47388,47539). High concentrations of DHEA in postmenopausal patients have been associated with an increased risk of breast cancer (2115,6445).
Psychiatric ...DHEA-induced mania has been reported (5870,6102,7023,21383). Clinical studies have also reported anxiety, nervousness, irritability, emotional change, and depression in patients receiving DHEA (2114,21358,21360,21370).
Pulmonary/Respiratory ...Increased cough and nasal congestion have been noted in human research (3865,11334). A report of acute respiratory failure was made in clinical study evaluating the use of DHEA in patients with myotonic dystrophy (type 1) (21334).
Other ...Perceived increases in weight gain have been reported with use of DHEA (2114,21361).
General
...Orally, fenugreek seed is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, diarrhea, dyspepsia, flatulence, hypoglycemia, and nausea.
Serious Adverse Effects (Rare):
All ROA: Severe allergic reactions including angioedema, bronchospasm, and shock.
Endocrine ...Orally, large doses of fenugreek seed, 100 grams daily of defatted powder, have caused hypoglycemia (164,96068).
Gastrointestinal ...Orally, fenugreek seed can cause mild gastrointestinal symptoms, such as diarrhea, dyspepsia, abdominal distention and pain, nausea, and flatulence, especially when taken on an empty stomach (622,12534,18349,93421,96065,96068,105016).
Immunologic ...Fenugreek can cause allergic reactions when used orally and topically, and when the powder is inhaled (719,96068). Orally, fenugreek has caused bronchospasm, diarrhea, and itching, and skin reactions severe enough to require intravenous human immunoglobulin (96068). Topically, fenugreek paste has resulted in facial swelling, wheezing, and numbness around the head (719,96068). When used both orally and topically by a single individual, asthma and rhinitis occurred (96068). Inhalation of fenugreek powder has resulted in fainting, sneezing, runny nose, and eye tearing (719,96068).
Neurologic/CNS ...Orally, loss of consciousness has occurred in a 5 week-old infant drinking tea made from fenugreek (9782). Dizziness and headaches have been reported in clinical research of fenugreek extract (49551,93419). However, these events are rare.
Renal ...Orally, fenugreek aqueous see extract may increase the frequency of micturition, although this even appears to be rare (49551).
Other
...Consumption of fenugreek during pregnancy, immediately prior to delivery, may cause the neonate to have an unusual body odor, which may be confused with maple syrup urine disease.
It does not appear to cause long-term sequelae (9781). This unusual body odor may also occur in children drinking fenugreek tea. A case of a specific urine and sweat smell following oral fenugreek extract use has been reported for a patient in one clinical trial (18349).
In 2011, outbreaks of enteroaggregative hemorrhagic Escherichia coli (EATEC) O104:H4 infection occurred in Germany and Spain. Epidemiological studies linked the outbreaks to fenugreek seeds that had been imported from Africa. However, laboratory analyses were unable to isolate the causative strain of bacteria from fenugreek seed samples (49776,49777,49781,90114).
General
...Oral, intravenous, and topical L-arginine are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, nausea, diarrhea, headache, insomnia, flushing.
Intravenously: Excessively rapid infusion can cause flushing, headache, nausea and vomiting, numbness, and venous irritation.
Cardiovascular ...L-arginine taken orally by pregnant patients in a nutrition bar containing other antioxidants was associated with a 36% greater risk of palpitations when compared with a placebo bar (91197). It is unclear if this effect was due to L-arginine, other ingredients, or other factors.
Dermatologic ...Orally, arginine can cause flushing, rash, and hives (3460,32138,102587,104223). The skin reactions were likely of allergic etiology as oral L-arginine has been associated with eosinophilia (32138). In one case report, intravenous administration caused allergic reactions including urticaria, periorbital edema, and pruritus (11830). Excessively rapid infusion of L-arginine has caused flushing, local venous irritation, numbness. Extravasation has caused necrosis and superficial phlebitis (3330,16817).
Gastrointestinal
...Orally, L-arginine has been reported to cause nausea, diarrhea, vomiting, dyspepsia, gastrointestinal discomfort, and bloating (1363,31855,31871,31972,31978,32261,90198,91197,96811,99243)(102587,102592).
Orally, L-arginine has been reported to cause esophagitis in at least six adolescents. Symptoms, which included pain and dysphagia, occurred within 1-3 months of treatment in most cases (102588). There are at least two cases of acute pancreatitis possibly associated with oral L-arginine. In one case, a 28-year-old male developed pancreatitis after consuming a shake containing 1.2 grams of L-arginine daily as arginine alpha-ketoglutarate. The shake also contained plant extracts, caffeine, vitamins, and other amino acids. Although there is a known relationship between L-arginine and pancreatitis in animal models, it is not clear if L-arginine was directly responsible for the occurrence of pancreatitis in this case (99266).
Intravenously, excessively rapid infusion of L-arginine has been reported to cause nausea and vomiting (3330,16817).
Musculoskeletal ...Intravenous L-arginine has been associated with lower back pain and leg restlessness (32273). Orally, L-arginine has been associated with asthenia (32138).
Neurologic/CNS ...Orally, L-arginine has been associated with headache (31855,31955,32261,91197,102587,102592), insomnia, fatigue (102587,102592), and vertigo (32150,102592).
Oncologic ...In breast cancer patients, L-arginine stimulated tumor protein synthesis, which suggests stimulated tumor growth (31917).
Pulmonary/Respiratory ...When inhaled, L-arginine can cause airway inflammation and exacerbation of airway inflammation in asthma (121). However, two studies assessing oral L-arginine in patients with asthma did not detect any adverse airway effects (31849,104223).
Renal ...Intravenously, L-arginine has been associated with natriuresis, kaliuresis, chloruresis, and systemic acidosis (32225). Orally, L-arginine can cause gout (3331,3595).
Other ...Orally, L-arginine has been associated with delayed menses, night sweats, and flushing (31855).
General ...Orally, no adverse effects have been reported with the medicinal use of maca. However, a thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Consumption of fresh, uncooked maca may cause stomach pain (40231).
General
...Orally, Panax ginseng is generally well tolerated when used for up to 6 months.
There is some concern about the long-term safety due to potential hormone-like effects.
Topically, no adverse effects have been reported when ginseng is used as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Insomnia.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, arrhythmia, ischemia, Stevens-Johnson syndrome.
Cardiovascular ...Panax ginseng may cause hypertension, hypotension, and edema when used orally in high doses, long-term (3353). However, single doses of Panax ginseng up to 800 mg are not associated with changes in electrocardiogram (ECG) parameters or increases in heart rate or blood pressure (96218). There is a case report of menometrorrhagia and tachyarrhythmia in a 39-year-old female who took Panax ginseng 1000-1500 mg/day orally and also applied a facial cream topically that contained Panax ginseng. Upon evaluation for menometrorrhagia, the patient also reported a history of palpitations. It was discovered that she had sinus tachycardia on ECG. However, the patient was a habitual consumer of coffee 4-6 cups/day and at the time of evaluation was also mildly anemic. The patient was advised to discontinue taking Panax ginseng. During the 6 month period following discontinuation the patient did not have any more episodes of menometrorrhagia or tachyarrhythmia (13030). Also, a case of transient ischemic attack secondary to a hypertensive crisis has been reportedly related to oral use of Panax ginseng (89402).
Dermatologic
...Orally, Panax ginseng may cause itching or an allergic response consisting of systemic rash and pruritus (89743,89760,104953,114984,114985).
Skin eruptions have also been reported with use of Panax ginseng at high dosage, long-term (3353). Uncommon side effects with oral Panax ginseng include Stevens-Johnson syndrome (596).
In one case report, a 6-year-old male with a previous diagnosis of generalized pustular psoriasis, which had been in remission for 18 months, presented with recurrent pustular lesions after consuming an unspecified dose of Panax ginseng. The patient was diagnosed with pityriasis amiantacea caused by subcorneal pustular dermatosis. Treatment with oral dapsone 25 mg daily was initiated, and symptoms resolved after 4 weeks (107748). In another case report, a 26-year-old female presented with itchy exanthem and oval erythematous lesions on the face, neck, and abdomen after consuming a decoction containing Panax ginseng, aconite, ginger, licorice, Cassia cinnamon, goldthread, and peony 400 mL twice daily for 1 week. Pityriasis rosea-like eruption was suspected, but the patient refused topical or oral antihistamines or corticosteroids. The patient continued taking the decoction but with Panax ginseng and aconite removed. After 6 days, symptoms began to resolve, and by 17 days symptom improvement was significant (114986). It is unclear if this reaction was due to Panax ginseng, aconite, the combination, or some other factor. Pityriasis rosea typically resolves spontaneously.
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, mild pain, local irritation, and burning have occurred (2537).
Endocrine
...The estrogenic effects of ginseng are controversial.
Some clinical evidence suggests it doesn't have estrogen-mediated effects (10981). However, case reports of ginseng side effects such as postmenopausal vaginal bleeding suggest estrogenic activity (590,591,592,10982,10983).
In a 12-year-old Korean-Japanese male, enlargement of both breasts with tenderness in the right breast (gynecomastia) occurred after taking red ginseng extract 500 mg daily orally for one month. Following cessation of the product, there was no further growth or pain (89733). Swollen and tender breasts also occurred in a 70-year-old female using Panax ginseng orally (590).
Gastrointestinal ...Orally, Panax ginseng can cause decreased appetite (3353), constipation, diarrhea, dyspepsia (3353,89734,103477,112841,114980,114985), abdominal pain (89734,87984,112841,114985), and nausea (589,87984). However, these effects are typically associated with long-term, high-dose usage (3353). Some evidence suggests that fermented Panax ginseng is more likely to cause abdominal pain and diarrhea when compared with unfermented Panax ginseng (112841).
Genitourinary
...Amenorrhea has been reported with oral use of Panax ginseng (3353).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, sporadic erectile dysfunction and excessively delayed ejaculation have occurred (2537). Less commonly, patients can experience vaginal bleeding (591,592,3354,23630).
Hepatic ...It is unclear if Panax ginseng is associated with adverse hepatic effects. Cholestatic hepatitis has been reported in a 65-year old male following oral use of a combination product containing Panax ginseng and other ingredients (Prostata). However, it is unclear if this adverse effect was due to Panax ginseng, other ingredients, or the combination (598). An elevation in liver enzymes has been rarely reported in clinical research (114985).
Immunologic ...A case of anaphylaxis, with symptoms of hypotension and rash, has been reported following ingestion of a small amount of Panax ginseng syrup (11971).
Neurologic/CNS ...Orally, one of the most common side effects to Panax ginseng is insomnia (589,89734,111336,114985). Headache (594,23638,112840,114985), vertigo, euphoria, and mania (594) have also been reported. Migraine and somnolence occurred in single subjects in a clinical trial (87984). In a case report of a 46-year-old female, orobuccolingual dyskinesia occurred following oral use of a preparation containing black cohosh 20 mg and Panax ginseng 50 mg twice daily for menopausal symptoms. The patient's condition improved once the product was stopped and treatment with baclofen 40 mg and clonazepam 20 mg daily was started (89735).
General
...Orally, rhodiola seems to be well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, increased or decreased production of saliva.
Gastrointestinal ...Orally, rhodiola extract may cause dry mouth or excessive saliva production (16410,16411).
Neurologic/CNS ...Orally, rhodiola extract can cause dizziness (16410).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, stinging nettle seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea.
Topically: Contact with the raw plant causes itching, rash, and stinging.
Dermatologic ...Topically, fresh stinging nettle leaves and stalk can cause localized rash, itching, and stinging (12490,76399,76412,76414,76417,76428,76448,96746). Usually, short exposure to stinging nettle results in a transient urticarial reaction and a stinging sensation which may persist for more than 12 hours (76399,76414,76417,96746). In one report, a patient placed a fresh stinging nettle leaf on the tongue to suck out the sap of the leaf. Severe tongue edema, pain, and urticaria developed within 5 minutes. Symptoms continued for several hours after the leaf was removed (15197). In another case report, a young couple intoxicated with methamphetamine fell and laid in a stinging nettle bush for 20 minutes, after which urticaria and pain continued for 2-3 weeks, and a heightened sensitivity to cold persisted for several months (96746).
Endocrine
...A case of gynecomastia has been reported for a 33-year-old male who consumed stinging nettle tea 2 cups daily for one month prior to symptom onset.
The condition subsided one month after discontinuing stinging nettle tea (76410).
There have been two cases of galactorrhea associated with the consumption of stinging nettle for one month (76410,108902). In one case, a 33-year-old female consuming stinging nettle tea showed high levels of estradiol and low levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH). The levels of these hormones normalized 6 weeks after discontinuing stinging nettle tea (76410). In the other case report describing a 30-year-old female self-treating with stinging nettle 500 mg daily, hormone levels were not reported; however, a mammogram showed scattered areas of fibroglandular density and benign-appearing calcifications. This patient had complete resolution of symptoms 1 week after discontinuation of stinging nettle (108902).
Gastrointestinal ...Orally, stinging nettle root can cause gastrointestinal complaints, including diarrhea and constipation (1,7,11230). Stinging nettle above ground parts may cause mild gastrointestinal discomfort when taken on an empty stomach (7035). Stinging nettle juice may cause diarrhea (1). One patient taking a combination product containing stinging nettle root extract and pygeum bark extract (Prostatonin, Pharmaton) experienced continual gastrointestinal pain and hyperperistalsis. It is not clear if this effect was due to stinging nettle or pygeum (70230).
Genitourinary ...There is a case report of decreased ejaculatory volume associated with an herbal blend product containing stinging nettle root extract, saw palmetto extract, pumpkin seed oil extract, lemon bioflavonoid extract, and beta-carotene (5093). It is unclear if this was due to stinging nettle, other ingredients, or the combination.
Hepatic ...A case of idiosyncratic drug-induced liver disease (DILI) is reported in a 36-year-old female who presented with abdominal pain after 1 month of taking an herbal liver detox tea containing stinging nettle and other ingredients. Remarkable laboratory values included elevated liver enzymes, alkaline phosphatase, and total bilirubin. The patient received a loading dose of N-acetylcysteine and was hospitalized for 12 days (112178). However, it is unclear if the adverse effect was due to the stinging nettle, other ingredients, or the combination.
Other ...Orally, stinging nettle root can cause sweating (1,7).
General
...Orally, there is limited information available about the adverse effects of yohimbe.
Yohimbine, a constituent of yohimbe, might be unsafe; most reported adverse effects are dose-related.
Most Common Adverse Effects:
Orally: Yohimbine, a constituent of yohimbe, has been associated with anxiety, agitation, diaphoresis, diarrhea, flushing, headache, hypertension, increased urination, nausea, tachycardia, tremors, vertigo, and vomiting.
Serious Adverse Effects (Rare):
Orally: Yohimbine, a constituent of yohimbe, has been associated with atrial fibrillation, hypertensive crisis, myocardial infarction, and QT interval prolongation.
Cardiovascular ...Orally, yohimbine, a constituent of yohimbe, has been associated with hypertension, especially at higher doses (3312,17465,86801,86802,86804,86811,86820,86822,86834,86856)(86786,86896). A case of hypertensive crisis was reported in a 63-year-old male taking a yohimbine-containing herbal product once daily for one month. The patient was successfully managed with intravenous nitroprusside followed by clonidine (91521). Tachycardia, fluid retention, palpitations, and chest discomfort have also been reported (3312,17465,86786,86793,86801,86802,86804,86822,86843,86854)(86856,86866,86867,86869,86871,86874,86875). Conduction abnormalities have also been reported (86856,86786). There have been some reports of myocardial infarction, atrial fibrillation, and QT interval prolongation (17465). In theory, these effects may also occur with the use of yohimbe bark extract.
Dermatologic ...Orally, yohimbine, a constituent of yohimbe, may cause rash, erythrodermic skin eruption, and exanthema (3312,3971,86804,86896,86878).
Gastrointestinal ...Orally, yohimbine, a constituent of yohimbe, may cause nausea, vomiting, increased salivation, diarrhea, and gastrointestinal distress (3970,17465,49902,86780,86781,86786,86801,86804,86824,86827)(86828,86829,86863,86878,86882,86896).
Genitourinary ...Orally, yohimbine may cause dartos contraction or decreased libido in some patients (86786,86882). A case of severe intractable priapism has been reported for a 42-year-old male who took a supplement containing yohimbe extract the previous day for sexual enhancement. Treatment with phenylephrine 400 mcg was unsuccessful at resolving the priapism, so surgical insertion of a proximal cavernosal spongiosum shunt was needed (86804).
Hematologic ...A case of drug-induced agranulocytosis has been reported following prolonged use of oral yohimbine, a constituent of yohimbe (86877).
Immunologic ...There is one report of a hypersensitivity reaction including fever; chills; malaise; itchy, scaly skin; progressive renal failure; and lupus-like syndrome associated with ingestion of a one-day dose of yohimbine, a constituent of yohimbe (6169).
Musculoskeletal ...Orally, yohimbine, a constituent of yohimbe, may cause muscle aches (86850).
Neurologic/CNS ...Orally, yohimbine, a constituent of yohimbe, has been associated with reports of general central nervous system (CNS) and autonomic excitation, tremulousness, head twitching, seizure threshold changes, enhanced brain norepinephrine release, decreased energy, dizziness, vertigo, and headache (3312,3971,86774,86779,86786,86804,86827,86857,86870,86882)(86883). Cold feet and chills have also been reported with yohimbine (86827,86896). Other adverse reactions include flushing and diaphoresis (17465). Excessive doses of yohimbine can also cause paralysis (11,18). A case of acute neurotoxicity characterized by malaise, vomiting, loss of consciousness, and seizures has been reported for a 37-year-old bodybuilder who ingested a single dose of yohimbine 5 grams. Improvement was seen within 12 hours following treatment with furosemide, labetalol, clonidine, urapidil, and gastrointestinal decontamination (86801).
Psychiatric ...Orally, yohimbine, a constituent of yohimbe, may increase malaise, fatigue, insomnia, restlessness, agitation, and anxiety (3312,3970,3971,17465,86786,86801,86804,86822,86827,86834)(86868,86878,86882,86896). In a clinical study of healthy subjects, administration of yohimbine increased impulsivity, with larger doses increasing impulsivity more than 50% (86784,86810).
Pulmonary/Respiratory ...Orally, yohimbine, a constituent of yohimbe, may cause bronchospasm, tachypnea, cough, and rhinorrhea (17465,86825,86850). A case of sinusitis characterized by pain and discomfort above both eyes has been reported for a 59-year-old male taking yohimbine 5.4 mg three times daily to treat erectile dysfunction. Symptoms resolved within 24 hours of discontinuing yohimbine. The effect was attributed to the alpha-2 adrenergic antagonist effects of yohimbine (94112). Excessive doses of yohimbine can cause respiratory depression (1118).
Renal ...Orally, yohimbine, a constituent of yohimbe, may increase urinary frequency (3312,3970,3971,17465,86804,86827,86850,86861,86882). A case of acute renal failure has been reported for a 42-year-old male taking yohimbine. Normalization of renal function was achieved following 2 weeks of treatment with corticosteroids. The renal dysfunction was attributed to yohimbine-induced systemic lupus erythematosus (6169).