Ingredients | Amount Per Serving |
---|---|
Calories
|
10 {Calories} |
Total Carbohydrates
|
3 Gram(s) |
(Ca)
(Dicalcium Phosphate)
(Calcium (Form: as Dicalcium Phosphate) )
|
40 mg |
(as Dicalcium {Phosphate}, & Dipotassium Phosphate)
(Phosphorus (Form: as Dicalcium {Phosphate}, & Dipotassium Phosphate) )
|
70 mg |
(as Creatine MagnaPower)
(Magnesium (Form: as Creatine MagnaPower (Alt. Name: Magnesium Creatine Chelate)) )
|
120 mg |
(Na)
|
10 mg |
(as Dipotassium Phosphate)
(Potassium (Form: as Dipotassium Phosphate) )
|
60 mg |
Micro-Peptide Creatine Complex
|
|
(Creatine Anhydrous, Creatine HCl, as Magnesium Creatine Chelate, micronized Creatine Monohydrate)
(Creatine (Form: as Magnesium Creatine Chelate (Alt. Name: Creatine MagnaPower(R)), Creatine HCl, Creatine Anhydrous, Micronized Creatine Monohydrate) )
|
5 Gram(s) |
(as hydrolyzed Whey Peptides)
(Creatine Precursor Peptide (Form: as Hydrolyzed Whey Peptides) )
|
500 mg |
N.O. Pump Charger
|
|
(L-Arginine, L-Arginine, Micronized, Whey Peptides, Hydrolyzed)
(Arginine (Form: as L-Arginine, Micronized Arginine, and Hydrolyzed Whey Peptides) )
|
1 Gram(s) |
Russian Tarragon
|
50 mg |
(Citrus sinensis )
(fruit & peel)
|
50 mg |
(root)
|
25 mg |
Natural & Artificial flavors, Citric Acid, Malic Acid, Calcium Silicate, Sucralose, Acesulfame Potassium, Polysorbate, FD&C Red #40
Below is general information about the effectiveness of the known ingredients contained in the product Creatine Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Creatine Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally and appropriately, short-term. Creatine supplementation appears to be safe when used at loading doses of up to 25 grams daily or 0.3 grams/kg daily for up to 14 days in healthy adults (1367,2100,2101,3996,4569,10064,15354,15520,46570,46587)(46673,46688,46719,46753,46801,103278,103279,108336). Creatine supplementation also appears to be safe when used at maintenance doses of 4-5 grams daily for up to 18 months (2101,4578,15353,15354,15520,46587,46673,46690,46753,46838,102164,103278,108336).
POSSIBLY SAFE ...when used orally and appropriately, long-term. Creatine supplementation has been safely used at doses of up to 10 grams daily for up to 5 years in some preliminary clinical research (1367,3996). There is insufficient reliable information available about the safety of creatine when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Creatine supplementation appears to be safe when used in appropriate doses in infants and children. Creatine 3-5 grams daily for 2-6 months has been safely used in children 5-18 years of age (6182,46596,46739,46841). Creatine 2 grams daily for 6 months has been safely used in children 2-5 years of age (46841). Additionally, weight-based dosing of creatine 0.1-0.4 grams/kg daily in infants and children or 4.69 grams/m2 in children weighing over 40 kg has been used safely for up to 6 months (46623,46629,46694,46759,104672).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. L-arginine has been used safely in clinical studies at doses of up to 24 grams daily for up to 18 months (3331,3460,3595,3596,5531,5532,5533,6028,7815,7816)(8014,8473,13709,31943,91195,91196,91963,99264,99267,110380)(110387). A tolerable upper intake level (UL) for arginine has not been established, but the observed safe level (OSL) of arginine intake established in clinical research is 20 grams (31996). ...when used intravenously and appropriately. Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically and appropriately. L-arginine appears to be safe when 5 grams is applied as a topical cream twice daily for 2 weeks or when a dentifrice is used at a dose of 1.5% w/w for up to 2 years (14913,96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks (96807).
CHILDREN: POSSIBLY SAFE
when used orally in premature infants and children (8474,32286,96803,97392,110391).
...when used intravenously and appropriately (97392). Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically, short-term. A dentifrice containing L-arginine appears to be safe when used at a dose of 1.5% w/w for up to 2 years in children at least 3.7 years of age (96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks in children at least 13 years of age (96807).
CHILDREN: POSSIBLY UNSAFE
when used intravenously in high doses.
Parenteral L-arginine is an FDA-approved prescription product (15). However, when higher than recommended doses are used, injection site reactions, hypersensitivity reactions, hematuria, and death have occurred in children (16817).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
L-arginine 12 grams daily for 2 days has been used with apparent safety in pregnancy during the third trimester (11828). L-arginine 3 grams daily has been taken safely during the second and/or third trimesters (31938,110379,110382). ...when used intravenously and appropriately, short-term. Intravenous L-arginine 20-30 grams daily has been used safely in pregnancy for up to 5 days (31847,31933,31961,31978).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally and appropriately short-term (15). ...when sodium phosphate is used rectally and appropriately, no more than once every 24 hours, short-term (104471). Long-term use or high doses used orally or rectally require monitoring of serum electrolytes (2494,2495,2496,2497,2498,3092,112922). ...when used intravenously. Potassium phosphate is an FDA-approved prescription drug (15).
POSSIBLY UNSAFE ...when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL) of 4 grams daily for adults under 70 years and 3 grams daily for adults older than 70. Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur (7555). ...when used rectally more frequently than once every 24 hours, in excessive doses, with longer retention enema time, or in older patients with comorbidity or renal impairment (112922). The US Food and Drug Administration (FDA) warns that this may increase the risk of hyperphosphatemia, dehydration, and electrolyte imbalances leading to kidney and heart damage (104471).
CHILDREN: LIKELY SAFE
when used orally and appropriately at recommended dietary allowances (RDAs).
The daily RDAs are: children 1-3 years, 460 mg; children 4-8 years, 500 mg; males and females 9-18 years, 1250 mg (7555). ...when sodium phosphate is used rectally and appropriately, no more than once every 24 hours, short-term in children 2 years and older (104471). ...when used intravenously. Intravenous potassium phosphate is an FDA-approved prescription drug (15).
CHILDREN: POSSIBLY UNSAFE
when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL) of 3 grams daily for children 1-8 years of age and 4 grams daily for children 9 years and older.
Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur (7555). ...when sodium phosphate is used rectally more frequently than once every 24 hours, or in children under 2 years of age or with Hirchsprung disease (112922). The US Food and Drug Administration (FDA) warns that these uses may increase the risk of hyperphosphatemia, dehydration, and electrolyte imbalances leading to kidney and heart damage (104471).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately at the recommended dietary allowance (RDA) of 1250 mg daily for individuals 14-18 years of age and 700 mg daily for those over 18 years of age (7555).
...when sodium phosphate is used rectally and appropriately short-term (15). ...when used intravenously. Intravenous potassium phosphate is an FDA-approved prescription drug (15).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL).
Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur. The UL during pregnancy is 3.5 grams daily. During lactation, the UL is 4 grams daily (7555).
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when sweet orange juice or fruit is used orally in amounts commonly found in foods (1310,3340,15171,92309,114401).
POSSIBLY SAFE ...when the essential oil of sweet orange is inhaled as aromatherapy, short-term (35735,58060,90505,105455). There is insufficient reliable information available about the safety of sweet orange peel when used orally.
CHILDREN: LIKELY SAFE
when sweet orange juice or fruit is used orally in amounts commonly found in foods.
CHILDREN: POSSIBLY UNSAFE
when the sweet orange peel is used orally in excessive amounts.
There have been reports of intestinal colic, convulsions, and death in children given large amounts of sweet orange peel (11).
PREGNANCY AND LACTATION: LIKELY SAFE
when sweet orange juice or fruit is used orally in amounts commonly found in foods (1310,3340).
Below is general information about the interactions of the known ingredients contained in the product Creatine Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
Hypercalcemia increases the risk of fatal cardiac arrhythmias with digoxin (12940). However, one retrospective analysis of clinical data suggests that intravenous calcium does not increase the risk of dysrhythmias or mortality in patients receiving digoxin (38960).
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
Advise patients to take levothyroxine and calcium supplements at least 4 hours apart. Calcium reduces levothyroxine absorption, probably by forming insoluble complexes (5082). Calcium carbonate supplements reduce effectiveness of levothyroxine in patients with hypothyroidism (5081,5082,6137).
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
Advise patients to take oral quinolones at least 2 hours before or 4-6 hours after calcium supplements or calcium-fortified foods. Taking calcium at the same time as oral quinolones can reduce quinolone absorption. Calcium binds to quinolones in the gut (4412,10339,21638,38570).
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, concomitant use of L-arginine and ACE inhibitors may increase the risk for hypotension and hyperkalemia.
Combining L-arginine with some antihypertensive drugs, especially ACE inhibitors, seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916). Furthermore, ACE inhibitors can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ACE inhibitors with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine and ARBs may increase the risk of hypotension and hyperkalemia.
L-arginine increases nitric oxide, which causes vasodilation (7822). Combining L-arginine with ARBs seems to increase L-arginine-induced vasodilation (31854). Furthermore, ARBs can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ARBs with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine with anticoagulant and antiplatelet drugs might have additive effects and increase the risk of bleeding.
Preliminary research suggests that L-arginine infusions reduce platelet aggregation in humans (32260,31864,32239,32220,32257,32263,32276,32188). The clinical significance of this effect is unclear.
|
Theoretically, concomitant use of L-arginine might have additive effects with antidiabetes drugs.
Preliminary clinical research shows that L-arginine decreases blood glucose levels in patients with type 2 diabetes (31964,32085,31964,104225).
|
Theoretically, concomitant use of L-arginine and antihypertensive drugs may increase the risk of hypotension.
L-arginine increases nitric oxide, which causes vasodilation (7822). Clinical evidence shows that L-arginine can reduce blood pressure in some individuals with hypertension (7818,10636,31871,32201,32167,32225,31923,32232,110383,110384). Furthermore, combining L-arginine with some antihypertensive drugs seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916).
|
Theoretically, concurrent use of isoproterenol and L-arginine might result in additive effects and hypotension.
Preliminary clinical evidence suggests that L-arginine enhances isoproterenol-induced vasodilation in patients with essential hypertension or a family history of essential hypertension (31932).
|
Theoretically concomitant use of potassium-sparing diuretics with L-arginine may increases the risk of hyperkalemia.
Potassium-sparing diuretics can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218).
|
Theoretically, concurrent use of sildenafil and L-arginine might increase the risk for hypotension.
In vivo, concurrent use of L-arginine and sildenafil has resulted in increased vasodilation (7822,8015,10636). Theoretically, concurrent use might have additive vasodilatory and hypotensive effects. However, in studies evaluating the combined use of L-arginine and sildenafil for erectile dysfunction, hypotension was not reported (105065).
|
Theoretically, concomitant use of L-arginine and testosterone might have additive effects.
In clinical research, L-arginine increases the level of testosterone in male patients with erectile dysfunction (102586,104222). The clinical significance of this finding is unclear.
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Clinical evidence suggests that treatment with oral magnesium hydroxide or magnesium trisilicate reduces absorption of digoxin from the intestines (198,20268,20270). This may reduce the blood levels of digoxin and decrease its therapeutic effects.
|
Gabapentin absorption can be decreased by magnesium.
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, taking phosphate salts with bisphosphonates might increase the risk of hypocalcemia.
Combining bisphosphonates and phosphate can cause hypocalcemia. In one report, hypocalcemic tetany developed in a patient taking alendronate (Fosamax) who received a large dose of phosphate salts as a pre-operative laxative (14589).
|
Taking erdafitinib with phosphate salts increases the risk of hyperphosphatemia.
Erdafitinib increases phosphate levels. It is recommended that patients taking erdafitinib restrict phosphate intake to no more than 600-800 mg daily (104470).
|
Taking futibatinib with phosphate salts increases the risk of hyperphosphatemia.
Futibatinib can cause hyperphosphatemia, as reported in 88% of patients in clinical studies. In addition, 77% of patients in clinical studies required use of a phosphate binder to manage hyperphosphatemia. Phosphate salts should generally be avoided by people taking this medication (112912).
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
High intake of dietary sodium can increase systolic and diastolic blood pressure (26222). Also, high intake of sodium may necessitate increased use of antihypertensive medications to achieve blood pressure control in some patients, such as those with chronic kidney disease (26223).
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Consuming sweet orange with celiprolol can decrease oral absorption of celiprolol.
A pharmacokinetic study in healthy volunteers shows that celiprolol levels, after a single dose of 100 mg, are decreased by up to 90% in people who drink sweet orange juice 200 mL three times daily. It's not known if lower consumption of sweet orange juice will have the same effect. Theoretically, this occurs due to short-term inhibition of organic anion transporting polypeptide (OATP) (12115,17603,17604). Recommend separating drug administration and consumption of sweet orange by at least 4 hours (17603,17604).
|
Consuming sweet orange juice with fexofenadine can decrease oral absorption of fexofenadine.
Clinical research shows that coadministration of sweet orange juice 1200 mL decreases bioavailability of fexofenadine by about 72% (7046,17604). In an animal model, sweet orange juice decreased bioavailability of fexofenadine by 31% (17605). Fexofenadine manufacturer data indicates that concomitant administration of sweet orange juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that sweet orange reduces the clinical response to fexofenadine (17603). Theoretically, this occurs due to short-term inhibition of organic anion transporting polypeptide (OATP) (7046). Recommend separating drug administration and consumption of sweet orange by at least 4 hours (17603,17604).
|
Consuming sweet orange juice with ivermectin can decrease the oral absorption of ivermectin.
A pharmacokinetic study in healthy volunteers shows that taking ivermectin orally with sweet orange juice 750 mL over 4 hours reduces the bioavailability of ivermectin. This effect does not seem to be related to effects on P-glycoprotein. The effect on ivermectin is more pronounced in males compared to females (12154).
|
Consuming sweet orange juice can decrease oral absorption of OATP substrates. Separate administration by at least 4 hours.
Clinical research shows that consuming sweet orange juice inhibits OATP, which reduces bioavailability of oral drugs that are substrates of OATP (17603,17604). For example, sweet orange juice decreases bioavailability of fexofenadine, a substrate of OATP, by about 72% and of celiprolol, another OATP substrate, by up to 90% (7046,12115). Since sweet orange juice seems to affect OATP for a short time, recommend separating drug administration and consumption of sweet orange juice by at least 4 hours (17603,17604).
|
Sweet orange juice seems to modulate P-glycoprotein (P-gp), which might affect the blood levels of P-gp substrates.
Animal and in vitro research suggest that orange juice extract inhibits drug efflux by P-gp, increasing absorption and levels of P-gp substrates (12116,15327). In contrast, pharmacokinetic research in humans shows that drinking large amounts of sweet orange juice decreases absorption and levels of the P-gp substrate celiprolol. This suggests that orange juice actually induces drug efflux by P-gp or affects drug levels by another mechanism such as inhibiting the gut drug transporter called organic anion transporting polypeptide (OATP) (7046,12115). Until more is known, sweet orange juice should be used cautiously in people taking P-gp substrates.
|
Consuming sweet orange juice with pravastatin can increase the absorption of pravastatin.
A small pharmacokinetic study in healthy volunteers shows that consuming sweet orange juice 800 mL over 3 hours, including before, during, and after taking pravastatin 10 mg, increases pravastatin levels by about 149%, without affecting pravastatin elimination. Theoretically this effect might be due to modulation of organic anion transporting polypeptides (OATPs) by sweet orange juice (14348). Sweet orange juice does not seem to affect simvastatin levels, but it is not known if sweet orange affects any of the other statins.
|
Calcium-fortified sweet orange juice might reduce quinolone absorption.
Calcium binds to quinolones in the gut. Theoretically, the calcium in certain fortified orange juices can also bind to quinolone antibiotics and reduce their absorption and levels (4412,10339,13714,21638,38570).
|
Below is general information about the adverse effects of the known ingredients contained in the product Creatine Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, creatine is generally well-tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dehydration, diarrhea, gastrointestinal upset, muscle cramps, and water retention.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about interstitial nephritis, renal insufficiency, rhabdomyolysis, and venous thrombosis.
Cardiovascular
...Some research suggests that creatine supplementation can cause edema.
In a randomized controlled trial, 26% of patients with amyotrophic lateral sclerosis (ALS) receiving creatine 10 grams daily reported edema after 2 months of treatment compared to 9% with placebo. The difference between groups was statistically significant at 2 months but not at month 4 and beyond. Creatine is believed to cause slight water retention, which may have been more apparent in patients who were immobilized due to ALS (46647). While this adverse drug reaction did not lead to worsening cardiac function in these patients, theoretically, creatine-related water retention could worsen congestive heart failure or hypertension.
There is one case report of lone atrial fibrillation in a 30-year-old male vegetarian. He started powdered creatine 20 grams daily for 5 days, followed by 2.5 grams daily for a month. However, he discontinued powdered creatine due to severe cramping and diarrhea, and reinitiated creatine supplementation a month later with an encapsulated formulation. Aside from gelatin in the capsule, creatine was the only ingredient listed in both formulations. During the loading dose phase, the patient developed dyspnea and palpitations and was diagnosed with lone atrial fibrillation in the emergency department. Symptoms resolved with treatment and supplement discontinuation (13187). Theoretically, alterations in electrolyte balance due to dehydration or diarrhea could lead to conduction abnormalities and arrhythmia; however, in this case, the patient had normal electrolyte levels. Contaminants in dietary supplements might also be responsible for adverse reactions; this specific creatine product was not tested for contaminants. It remains unclear whether creatine was associated with this event.
Theoretically, taking creatine nitrate might reduce blood pressure and heart rate due to its nitrate component. However, clinical research shows that creatine nitrate 12 grams daily for 7 days followed by 3 grams daily for 21 days does not lower blood pressure or heart rate acutely or chronically when compared to creatine monohydrate or placebo (95959).
Dermatologic
...In a small clinical trial of older, healthy males, one subject out of the 10 receiving creatine 5 grams four times daily for 10 days followed by 4 grams daily for 20 days reported a skin rash during the study.
The type and severity of rash and whether it resolved after creatine was discontinued were not discussed (4572). Also, skin rash has been reported by patients taking celecoxib and creatine; however, whether this effect was due to creatine or celecoxib is unclear (46706).
Topically, burning, itching, redness, irritation, and perception of changes in skin temperature have been reported (104669).
Endocrine ...Creatine may influence insulin production (11330). In human research, insulin levels increased 120 and 240 minutes after creatine supplementation (46760); however, there was no effect in another trial (46732). In a clinical study, 0.3 grams/kg of creatine daily for one week significantly increased cortisol levels by 29%. However, the levels returned to baseline at week 2 (46615).
Gastrointestinal
...Some small clinical studies have reported diarrhea and vomiting with oral creatine supplementation (4584,11332,46562,46684,46698,46704,104673).
Also, gastrointestinal distress, transient abdominal discomfort, constipation, heartburn, and nausea have been reported by a small number of individuals in randomized, controlled clinical trials (4572,11332,46527,46528,46573,46589,46622,46668,46684,46695), (46704,46771,95964,104668,104669,104673,108316). However, most high-quality clinical research shows that creatine does not increase the incidence of gastrointestinal upset (103102,103278,103279).
Undissolved creatine powder may cause gastroenteritis (1368). Additionally, simultaneous intake of creatine and caffeine powder may increase the occurrence of gastrointestinal distress (95964).
Hematologic ...There are two case reports of creatine-related venous thrombosis in otherwise healthy adults. In the first case, an active 18-year-old male who had been taking an unspecified dose of creatine daily for 3 months was diagnosed with venous thrombosis via MRI. The patient reported increased thirst and fluid consumption when taking creatine. In the second case, an active 31-year-old male who had recently taken a 5-hour flight was diagnosed with deep vein thrombosis. He had been taking an unspecified dose of creatine. After stopping creatine and receiving anticoagulation therapy for 6 months, both patients' thromboses were resolved and did not recur. Researchers speculate that dehydration might be to blame for these adverse events, as dehydration increases the risk of thrombosis. In both cases, thrombophilic conditions were ruled out, and a temporal relationship between creatine consumption and thrombosis was established (90301). However, it remains unclear if creatine was responsible for these thrombotic events.
Hepatic
...Despite two case reports describing hepatic injury in patients taking creatine (46701,90319), meta-analyses and clinical studies specifically evaluating the safety of creatine have not identified an increased risk for hepatic injury (103278,103279).
In addition, population research suggests that there is not an association between creatine intake and liver fibrosis, cirrhosis, or hepatic steatosis. However, this study largely included subjects consuming less than 4 grams daily (112208).
One preliminary clinical trial specifically evaluated the effect of creatine loading and maintenance doses on hepatic function indices in healthy adults. No clinically significant changes in hepatic indices were reported in patients taking creatine loading doses of 20 grams daily for 5 days followed by maintenance doses of 3 grams daily for 8 weeks (46521). Another clinical study evaluated the impact of creatine monohydrate and creatine nitrate on liver function enzymes, showing no change in levels within 5 hours after the first dose of 12 grams or after continued consumption of 12 grams daily for 7 days followed by 3 grams daily for 21 days (95959). The patients that experienced hepatic injury in the available case reports were also taking other exercise supplements. Whether the reported adverse hepatic effects were due to creatine or the other supplements patients were taking is unclear. Also, neither of these case reports addressed whether the supplements were tested for contamination (46701,90319).
Musculoskeletal ...Creatine-associated increase in body mass is well documented in randomized, controlled clinical trials and is often as large as 1-2 kg during the five-day loading period of creatine (2101,4569,4589,4591,4600,4605,46504,46561,46815,46827)(46830,46843,95962,103279,112201). This may be considered an unwanted adverse reaction in some individuals and a desired effect of supplementation in others. This weight gain may interfere with mass-dependent activities such as running and swimming (46504,46823). Muscle cramping due to creatine supplementation has been reported in controlled clinical trials and may result from water retention in skeletal muscle (2104,4572,4584,30915,46562,46695,46826,46827,104673). However, most high quality clinical research shows that creatine does not increase the incidence of musculoskeletal injuries or muscle cramping (103102). In one case report, rhabdomyolysis in a weight lifter using creatine 25 grams daily over a one-year period has been reported (12820). Another case report describes an adult male who developed acute compartment syndrome of the leg after regular consumption of an unspecified amount of creatine and cocaine (112210).
Neurologic/CNS ...In clinical research, thirst, sleepiness, mild headache, and syncope have been reported for patients taking creatine, although the events were uncommon (46578,46615,46820). More serious adverse events have been reported for patients taking creatine in combination with other ingredients. A case of ischemic stroke has been reported for an athlete who consumed creatine monohydrate 6 grams, caffeine 400-600 mg, ephedra 40-60 mg, and a variety of other supplements daily for 6 weeks (1275). In another case, a 26 year old male reported with a hemorrhagic stroke linked to taking the supplement Jack3d, which contains creatine, DMAA, schizandrol A, caffeine, beta-alanine, and L-arginine alpha-ketoglutarate (90318). It is likely that these adverse events were due to other ingredients, such as caffeine, ephedra, and DMAA, which are known to have stimulant and vasoconstrictive properties.
Oncologic ...Population research shows that use of muscle building supplements such as creatine, protein, and androstenedione is associated with an increased odds of testicular germ cell cancer. This risk appears to be more apparent in early users, those using two or more muscle building supplements, and those with long-term use of the supplements. The odds of testicular germ cell cancer may be increased by up to 155% in males taking both creatine and protein supplements (90329). The risk of testicular germ cell cancer from creatine alone is unclear from this study.
Psychiatric ...Anxiety, irritability, depression, aggression, and nervousness have been reported in clinical research for patients taking creatine, although the effects are not common (46518). A case of acute organic psychosis was reported in a 32-year-old soldier in Iraq who was consuming excessive amounts of caffeine coupled with use of creatine (Creatamax, MaxiNutrition) one tablet twice daily for 3 weeks plus a specific stimulant containing bitter orange, guarana seed extract, and St. John's wort extract (Ripped Fuel Ephedra Free, Twinlabs) two tablets three times daily for 2 days prior to admission. The psychosis was considered likely due to caffeine consumption in combination with the stimulant supplement rather than creatine (37982).
Renal
...Isolated cases of renal dysfunction in patients taking creatine have been reported, including a case of interstitial nephritis in a healthy male (184) and a case of renal insufficiency in a football player (46828).
In contrast to these cases, several clinical studies and case reports have shown that creatine does not affect markers of renal function in healthy adults (2120,3996,4573,16535,46735,46749,46758,46779,46813,95959,103279). Doses studied included 5- to 7-day loading regimens of 12 to 21 grams daily (2120,46813), or maintenance doses of 3-10 grams daily for up to 2 years (16535,46712,46758,95959). In two additional studies, creatine supplementation 15.75 grams for 5 days followed by 4.25 grams daily for 20 days with carbohydrate and protein ingestion led to no change of renal stress markers (46844). Other clinical research has shown that ingestion of creatine up to 30 grams daily for 5 years is not associated with an increased incidence of renal dysfunction (103102).
Other case reports involve patients with pre-existing renal dysfunction. For example, in one case, a patient with a history of recurrent renal failure developed relapsing steroid-responsive nephritis syndrome after taking creatine (1368,2118). In another case, a patient with diabetic nephropathy who was taking creatine and metformin developed severe metabolic acidosis and acute renal failure. It is unclear if creatine contributed to this event, as metformin alone is known to cause metabolic acidosis (46738). These case reports have raised concern that individuals with pre-existing renal dysfunction may be at increased risk for renal injury with creatine supplementation. However, no prospective clinical trials have been conducted in this population to clarify this concern.
In addition, two cases of acute kidney injury and hypercalcemia have been reported in 16 year old males that took 1-4 servings of creatine for less than 4 weeks; however, the creatine product contained unlabeled, very high doses of vitamin D, which is the likely cause of these symptoms (109739).
In one survey, 13% of male collegiate athletes taking creatine reported dehydration (4584). The Association of Professional Team Physicians has warned that creatine may cause dehydration, heat-related illnesses, and electrolyte imbalances, and reduce blood volume. Mild transient dehydration resulting in an elevated serum creatinine was also reported in a single person in a clinical trial (104672). However, a study found that creatine supplementation during preseason football training had no effect on fluid or electrolyte status (46845). Additionally, most high quality clinical research shows that creatine does not increase dehydration (103102). A theoretical increase in risk of dehydration due to intracellular fluid shifts has led most creatine manufacturers to caution about adequate hydration with creatine supplementation (4576).
Other
...There have been reports of heat intolerance with oral creatine supplementation (46505).
Increases in formaldehyde production have been reported with creatine use. A-24 year-old man taking supratherapeutic doses of creatine monophosphate in combination with an energy supplement developed malignant hyperthermia after undergoing anesthesia. His symptoms included tachycardia, hypertension, hypercarbia, and hyperthermia. Environmental factors are suspected to have played a role in the development of malignant hyperthermia, so whether this adverse event was due to creatine at all is unclear (46717).
In 1997, three collegiate wrestlers died after engaging in a rapid weight-loss program in order to qualify for competition (93628). Initially creatine supplementation was considered to have contributed to or caused these deaths (12820,93629); however, investigations by the U.S. Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) did not confirm this belief (12820,93630). It appears that only one of the three wrestlers had been using creatine. Instead, the deaths were related to drastic, short-term weight loss in which the wrestlers wore rubber suits, avoided hydration, and performed workouts in rooms with temperatures up to 33 °C (1368,93631).
General
...Oral, intravenous, and topical L-arginine are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, nausea, diarrhea, headache, insomnia, flushing.
Intravenously: Excessively rapid infusion can cause flushing, headache, nausea and vomiting, numbness, and venous irritation.
Cardiovascular ...L-arginine taken orally by pregnant patients in a nutrition bar containing other antioxidants was associated with a 36% greater risk of palpitations when compared with a placebo bar (91197). It is unclear if this effect was due to L-arginine, other ingredients, or other factors.
Dermatologic ...Orally, arginine can cause flushing, rash, and hives (3460,32138,102587,104223). The skin reactions were likely of allergic etiology as oral L-arginine has been associated with eosinophilia (32138). In one case report, intravenous administration caused allergic reactions including urticaria, periorbital edema, and pruritus (11830). Excessively rapid infusion of L-arginine has caused flushing, local venous irritation, numbness. Extravasation has caused necrosis and superficial phlebitis (3330,16817).
Gastrointestinal
...Orally, L-arginine has been reported to cause nausea, diarrhea, vomiting, dyspepsia, gastrointestinal discomfort, and bloating (1363,31855,31871,31972,31978,32261,90198,91197,96811,99243)(102587,102592).
Orally, L-arginine has been reported to cause esophagitis in at least six adolescents. Symptoms, which included pain and dysphagia, occurred within 1-3 months of treatment in most cases (102588). There are at least two cases of acute pancreatitis possibly associated with oral L-arginine. In one case, a 28-year-old male developed pancreatitis after consuming a shake containing 1.2 grams of L-arginine daily as arginine alpha-ketoglutarate. The shake also contained plant extracts, caffeine, vitamins, and other amino acids. Although there is a known relationship between L-arginine and pancreatitis in animal models, it is not clear if L-arginine was directly responsible for the occurrence of pancreatitis in this case (99266).
Intravenously, excessively rapid infusion of L-arginine has been reported to cause nausea and vomiting (3330,16817).
Musculoskeletal ...Intravenous L-arginine has been associated with lower back pain and leg restlessness (32273). Orally, L-arginine has been associated with asthenia (32138).
Neurologic/CNS ...Orally, L-arginine has been associated with headache (31855,31955,32261,91197,102587,102592), insomnia, fatigue (102587,102592), and vertigo (32150,102592).
Oncologic ...In breast cancer patients, L-arginine stimulated tumor protein synthesis, which suggests stimulated tumor growth (31917).
Pulmonary/Respiratory ...When inhaled, L-arginine can cause airway inflammation and exacerbation of airway inflammation in asthma (121). However, two studies assessing oral L-arginine in patients with asthma did not detect any adverse airway effects (31849,104223).
Renal ...Intravenously, L-arginine has been associated with natriuresis, kaliuresis, chloruresis, and systemic acidosis (32225). Orally, L-arginine can cause gout (3331,3595).
Other ...Orally, L-arginine has been associated with delayed menses, night sweats, and flushing (31855).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally, intravenously, and rectally, phosphate salts are generally well tolerated when used appropriately and/or as prescribed.
Most Common Adverse Effects:
Orally: Abdominal pain, anal irritation, bloating, diarrhea, headache, gastrointestinal irritation, hyperphosphatemia, hypocalcemia, malaise, nausea, sleep disturbance, and vomiting.
Rectally: Hyperphosphatemia and hypocalcemia.
Serious Adverse Effects (Rare):
Orally: Extraskeletal calcification.
Cardiovascular ...Orally, a case of allergic acute coronary syndrome e., Kounis syndrome) is reported in a 43-year-old female after ingesting a specific sodium phosphate laxative product (Travad oral). She presented with maculopapular rash that progressed to anaphylaxis and a non-ST elevation acute coronary syndrome. The patient recovered after hospitalization for 3 days with medical management (112894).
Gastrointestinal ...Orally, phosphate salts can cause gastrointestinal irritation, nausea, abdominal pain, bloating, anal irritation, and vomiting (15,2494,2495,2496,2497,93846,93848,93850,93851,93853,107008). Sodium and potassium phosphates can cause diarrhea (15). Aluminum phosphate can cause constipation (15). A large comparative study shows that, when taken orally as a bowel preparation for colonoscopy, sodium phosphate is associated with gastric mucosal lesions in about 4% of patients (93868).
Neurologic/CNS ...Orally, phosphate salts can commonly cause malaise (93846). Headaches and sleep disturbance may also occur (93848,93851).
Renal ...Orally, use of sodium phosphate for bowel cleansing has been associated with an increased risk of acute kidney injury in some patients (93863). However, a pooled analysis of clinical research suggests that results are not consistent for all patients (93864). Some evidence suggests that female gender, probably due to lower body weight, iron-deficiency anemia, dehydration, and chronic kidney disease are all associated with an increased risk of sodium phosphate-induced kidney dysfunction (93865).
Other
...Orally, phosphate salts can cause fluid and electrolyte disturbances including hyperphosphatemia and hypocalcemia, and extraskeletal calcification.
Potassium phosphates can cause hyperkalemia. Sodium phosphates can cause hypernatremia and hypokalemia (15,2494,2495,2496,2497,107008).
Rectally, phosphate salts can cause fluid and electrolyte disturbances including hyperphosphatemia and hypocalcemia (15,112922).
Deaths related to intake of oral or rectal phosphate salts are rare and most have occurred in infants and are related to overdose (93866). However, death has also been reported in elderly patients using sodium phosphate enemas, mainly at standard doses of 250 mL (93867).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General ...Orally, sweet orange juice or fruit seem to be well tolerated. Large amounts of sweet orange peel may be unsafe, especially for children. When inhaled, sweet orange essential oil seems to be generally well tolerated.
Gastrointestinal ...There have been reports of intestinal colic in children following ingestion of large amounts of sweet orange peel (11).
Neurologic/CNS ...There have been reports of convulsions in children following ingestion of large amounts of sweet orange peel (11).