Ingredients | Amount Per Serving |
---|---|
(Fe)
(Iron (Form: from Ionic plant based minerals) )
|
2 mg |
HSO Probiotic Blend
((5 billion CFU) (CFU count at time of manufacture))
(HSO Probiotic Blend Note: (5 billion CFU) (CFU count at time of manufacture) )
|
410 mg |
(Saccharomyces boulardii )
|
|
(grass)
(produced using the Poten-Zyme fermentation process.)
(organic Barley Grass PlantPart: grass Note: produced using the Poten-Zyme fermentation process. )
|
|
(grass)
(produced using the Poten-Zyme fermentation process.)
(organic Oat Grass PlantPart: grass Note: produced using the Poten-Zyme fermentation process. )
|
|
(Lactobacillus plantarum )
|
|
Bacillus subtilis
(Bacillus subtilis )
|
|
(Bifidobacterium animalis lactis )
|
|
(Bifidobacterium bifidum )
|
|
(Lactobacillus rhamnosus )
|
|
(Bifidobacterium breve )
|
|
(Lactobacillus casei )
|
|
(Lactobacillus salivarius )
|
|
(Lactobacillus acidophilus )
|
|
(Lactobacillus brevis )
|
|
(Bifidobacterium longum )
|
|
(Lactobacillus paracasei )
|
|
Ionic plant based minerals
|
290 mg |
Vegetable Cellulose Note: capsule, organic Rice PlantPart: hull
Below is general information about the effectiveness of the known ingredients contained in the product Ultra Probiotic Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Ultra Probiotic Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately in food amounts (4819,4820,4821,5104,10166,10435,11134,11463,11986,92818). There is insufficient reliable information available about the safety of barley when used orally in medicinal amounts or when applied topically.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (19).
PREGNANCY: POSSIBLY UNSAFE
when barley sprouts are consumed in relatively high doses.
Excessive amounts of barley sprouts should not be consumed during pregnancy (19).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium lactis has been safely used alone or in combination with other probiotics in clinical trials lasting up to 12 weeks (92255,98502,105158,107572,107581,107586,110979,110985,110986,110992)(110993,110998,110999).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium lactis has been safely used alone or in combination with other probiotics in infants and children for up to 15 months (3169,3458,92265,95381,95382,98736,105149,107582,107583,107585)(107587,107590,110984,110987,110988,110991,110994,110995). A combination probiotic containing B. lactis and Lactobacillus acidophilus (HOWARU Protect, Danisco) has been used safely for up to 6 months in children aged 3-5 years (16847). A specific combination of B. lactis, Bifidobacterium bifidum, and L. acidophilus (Complete Probiotic Platinum) has also been used safely for up to 18 months in children aged 4 months to 5 years (103436). In addition, in children ages 4-17 years, 1 billion CFUs of a 1:1:1 combination of B. lactis CECT 8145, Lacticasebacillus casei CECT 9104, and Bifidobacterium longum CECT 7347 has been used safely for 12 weeks (107531). There is insufficient reliable information available about the safety of B. lactis in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available.
A meta-analysis of four clinical trials shows that taking probiotics during pregnancy increases the relative risk of pre-eclampsia by 85% when compared with placebo. Although the specific effects of Bifidobacterium lactis are unclear from this analysis, three of the included studies used B. lactis in combination with Lacticaseibacillus rhamnosus (105185). More information is needed to determine if certain patients are at increased risk.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium bifidum has been safely used alone or in combination with other probiotics in clinical trials lasting up to one year (1731,12775,14338,92255,107580,110972,110974,110978). There is insufficient reliable information available about the safety of non-viable, heat-killed B. bifidum formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium bifidum has been safely used alone or in combination with other probiotics in clinical trials in infants and children for up to 18 months (161,90286,90602,98736,103436,110971,110976,110924). There is insufficient reliable information available about the safety of B. bifidum in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when Bifidobacterium bifidum is used orally and appropriately, short-term.
A combination of B. bifidum, Lactobacillus acidophilus, and Lacticaseibacillus casei has been used with apparent safety for 6 weeks starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Bifidobacterium bifidum during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium breve has been safely used alone or in combination with other probiotics in clinical trials lasting up to one year (3261,6087,11379,12769,12775,14338,14370,14371,103447,111002)(111003,111005).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium breve has been safely used alone or in combination with other probiotics in infants and children for up to 12 months (17726,35377,92256,103449,105150,105151,107497,107598,111001)(111004,111008,111015). Cases of bacteremia have occurred rarely in children (107597). There is insufficient reliable information available about the safety of B. breve in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given B. breve or other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of Bifidobacterium breve during pregnancy or lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium longum has been safely used alone or in combination with other probiotics in clinical trials lasting up to one year (1233,12108,13054,14334,35382,35403,35424,103440,103446,105129)(107593,110968,110972,111773,111776,111847,111851,111854,111857,111858).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium longum has been safely used alone or in combination with other probiotics in infants and children for up to 4 months (3162,35377,35383,35393,35406,35407,92266,98736,107531,110924)(110976,111001,111015,111825,111833,111848). There is insufficient reliable information available about the safety of B. longum in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given these and other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally and appropriately, short-term.
A combination of Bifidobacterium longum and Lacticaseibacillus rhamnosus has been used with apparent safety throughout pregnancy (105128,105144). A combination of B. longum BB536 and Bifidobacterium breve M-16V has been used with apparent safety from about 4 weeks before the expected due date until delivery (111015). Also, a combination of B. longum and Lacticaseibacillus paracasei has been used with apparent safety from 2 months prior to delivery until 2 months after delivery during lactation (90285).
LIKELY SAFE ...when used orally and appropriately. For people age 14 and older with adequate iron stores, iron supplements are safe when used in doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron. The UL is not meant to apply to those who receive iron under medical supervision (7135,96621). To treat iron deficiency, most people can safely take up to 300 mg elemental iron per day (15). ...when used intravenously and appropriately. Ferric carboxymaltose 200 mg and iron sucrose 200 mg have been given intravenously for up to 10 doses with no reported serious adverse effects (91179). A meta-analysis of clinical studies of hemodialysis patients shows that administering high-dose intravenous (IV) iron does not increase the risk of hospitalization, infection, cardiovascular events, or death when compared with low-dose IV iron, oral iron, or no iron treatment (102861). A more recent meta-analysis of clinical studies of all patient populations shows that administering IV iron does not increase the risk of hospital length of stay or mortality, although the risk of infection is increased by 16% when compared with oral iron or no iron (110186). Another meta-analysis of 3 large clinical trials in patients with heart failure shows that IV ferric carboxymaltose at a dose of around 1500 mg every 6 months for a year does not increase the incidence of adverse effects when compared with placebo (113901). Despite these findings, there are rare reports of hypophosphatemia and/or osteomalacia (112603,112608,112609,112610,113905).
LIKELY UNSAFE ...when used orally in excessive doses. Doses of 30 mg/kg are associated with acute toxicity. Long-term use of high doses of iron can cause hemosiderosis and multiple organ damage. The estimated lethal dose of iron is 180-300 mg/kg; however, doses as low as 60 mg/kg have also been lethal (15).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135,91183,112601).
CHILDREN: LIKELY UNSAFE
when used orally in excessive amounts.
Tell patients who are not iron-deficient not to use doses above the tolerable upper intake level (UL) of 40 mg per day of elemental iron for infants and children aged 0-13 years and 45 mg per day for children aged 14-18 years. Higher doses frequently cause gastrointestinal side effects such as constipation and nausea (7135,20097). Iron is the most common cause of pediatric poisoning deaths. Doses as low as 60 mg/kg can be fatal (15).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iron is safe during pregnancy and breast-feeding in patients with adequate iron stores when used in doses below the tolerable upper intake level (UL) of 45 mg daily of elemental iron (7135,96625,110180).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally in high doses.
Tell patients who are not iron deficient to avoid exceeding the tolerable upper intake level (UL) of 45 mg daily of elemental iron. Higher doses frequently cause gastrointestinal side effects such as nausea and vomiting (7135) and might increase the risk of preterm labor (100969). High hemoglobin concentrations at the time of delivery are associated with adverse pregnancy outcomes (7135,20109).
LIKELY SAFE ...when used orally and appropriately. Lacticaseibacillus casei has been safely used alone or in combination with other ingredients in studies lasting up to 8 weeks (90230,112517).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lacticaseibacillus casei has been safely used alone in studies lasting up to 4 months (14373,107544). Also, a specific mixture (Latopic, Biomed S.A.) providing 1 billion CFUs of L. casei ŁOCK 0919 50%, Lacticaseibacillus rhamnosus ŁOCK 0900 25%, and L. rhamnosus ŁOCK 0908 25% has been used with apparent safety for 3 months in children under 2 years of age (107510). In addition, in children ages 4-17 years, a 1:1:1 combination of L. casei CECT 9104, Bifidobacterium animalis subsp. lactis CECT 8145, and Bifidobacterium longum CECT 7347 providing 1 billion CFUs has been used with apparent safety for 12 weeks (107531). There is insufficient reliable information available about the safety of L. casei in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lacticaseibacillus casei, Lactobacillus acidophilus, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lacticaseibacillus casei during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when live or heat-killed Lacticaseibacillus paracasei are used orally and appropriately. Live L. paracasei alone or in combination with other probiotics has been safely used in studies lasting up to 4 years (6087,14370,14371,35393,35407,103440,105133,107555,107557,110979)(111937,111938,111940,111943,111948,111950,111951,111953,111954,111955)(111958,111959,112512,112513,112518,112519). Non-viable, heat-killed L. paracasei has been safely used in studies lasting up to 3 months (111939,111940,111947). There is insufficient reliable information available about the safety of live or non-viable, heat-killed L. paracasei when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lacticaseibacillus paracasei alone or in combination with Limosilactobacillus fermentum has been used with apparent safety for up to 3 months in children 1-18 years old (98440). Also, live or heat-killed L. paracasei LP-33 has been used with apparent safety for 30 days in children aged 5 years and older (107532). In children ages 2-12 years, a specific combination product (Visbiome, ExeGi Pharma) containing L. paracasei and seven other probiotics has been used safely for 3 months (107497). Also, L. paracasei has been used with apparent safety in combination with Lactiplantibacillus plantarum for up to 12 weeks (107556). L. paracasei DN-114 011 has been taken safely for 90 days in children ages 3-6 years in fermented milk (DanActive, Dannon) (112515). There is insufficient reliable information available about the safety of L. paracasei in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lacticaseibacillus paracasei and Bifidobacterium longum from 2 months prior to delivery until 2 months after delivery has been used with apparent safety (90285).
LIKELY SAFE ...when used orally and appropriately. Lactobacillus acidophilus has been safely used as part of multi-ingredient probiotic products in studies lasting up to nine months (1731,6087,14370,14371,90231,90296,92255,103438,12775,107581)(110950,110970,110979,110998,111785,111793). ...when used intravaginally and appropriately. L. acidophilus has been used safely in studies lasting up to 12 weeks (12108,13176,13177,90265). There is insufficient reliable information available about the safety of non-viable, heat-killed L. acidophilus formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lactobacillus acidophilus has been safely used for up to 5 days (96887). Also, combination probiotics containing L. acidophilus have been used with apparent safety in various doses and durations. L. acidophilus has been combined with Bifidobacterium animalis (HOWARU Protect, Danisco) for up to 6 months in children 3-5 years old (16847), with Bifidobacterium bifidum for 6 weeks (90602,96890), with Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis (Complete Probiotic Platinum) for 18 months in children 4 months to 5 years of age (103436), and in a specific product (Visbiome, ExeGi Pharma) containing a total of 8 species for 3 months in children 2-12 years old (107497). There is insufficient reliable information available about the safety of L. acidophilus in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lactobacillus acidophilus during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately in food amounts (4960,4969,5792,5797). Oat bran has Generally Recognized as Safe (GRAS) status in the US (4912). Whole grain oats 50-100 grams daily have been used for up to 1 year without serious adverse effects (97520).
POSSIBLY SAFE ...when used topically and appropriately (12). Lotion containing colloidal oat 1% has been used topically without adverse effects for up to 6 weeks (97518,103340). There is insufficient reliable information available about the safety of oats when used orally in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts (5792,5797).
LIKELY SAFE ...when used orally and appropriately for up to 15 months (155,4347,4350,4351,4352,4353,4354,7140,7646,7652),(12763,14334,14379,14380,14381,72194,72198).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in children of most ages (4347,4356,14334,72145,92806,98734,103451,107603,107605,111102)(111103).
There is insufficient reliable information available about the safety of Saccharomyces boulardii in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Ultra Probiotic Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, barley might decrease the clinical effects of triclabendazole.
Animal research suggests that a diet supplemented with barley can reduce the bioavailability of triclabendazole when taken concomitantly (23884). This effect has not been shown in humans.
|
Theoretically, taking Bifidobacterium lactis with antibiotic drugs might decrease the effectiveness of B. lactis.
|
Theoretically, taking Bifidobacterium. bifidum with antibiotic drugs might decrease the effectiveness of B. bifidum.
|
Theoretically, taking Bifidobacterium breve with antibiotic drugs might decrease the effectiveness of B. breve.
|
Theoretically, taking Bifidobacterium longum with antibiotic drugs might decrease the effectiveness of B. longum.
|
Iron reduces the absorption of bisphosphonates.
Advise patients that doses of bisphosphonates should be separated by at least two hours from doses of all other medications, including supplements such as iron. Divalent cations, including iron, can decrease absorption of bisphosphonates by forming insoluble complexes in the gastrointestinal tract (15).
|
Theoretically, taking chloramphenicol with iron might reduce the response to iron therapy in iron deficiency anemia.
|
Administration of intravenous iron within one month of denosumab administration might increase the risk of severe hypophosphatemia and hypocalcemia.
A case of severe hypocalcemia (albumin corrected calcium 6.88 mg/dL, ionized calcium 3.68 mg/dL) and hypophosphatemia (<0.5 mg/dL) with respiratory acidosis, QT interval prolongation, and nonsustained ventricular tachycardia was reported in a 76-year-old male who had received an iron polymaltose infusion within 2 weeks of a subcutaneous injection of denosumab. Serum parathyroid hormone was also elevated (348 pg/mL). Subsequent iron infusions with iron polymaltose and ferric carboxymaltose were followed by transient hypophosphatemia, but without hypocalcemia. Additionally, a literature review describes 6 additional cases of hypophosphatemia and hypocalcemia in patients 52-92 years of age who had been administered intravenous iron as either ferric carboxymaltose or iron polymaltose and subcutaneous denosumab within 1-4 weeks of each other (113905).
|
Iron might decrease dolutegravir levels by reducing its absorption.
Advise patients to take dolutegravir at least 2 hours before or 6 hours after taking iron. Pharmacokinetic research shows that iron can decrease the absorption of dolutegravir from the gastrointestinal tract through chelation (93578). When taken under fasting conditions, a single dose of ferrous fumarate 324 mg orally along with dolutegravir 50 mg reduces overall exposure to dolutegravir by 54% (94190).
|
Theoretically, taking iron along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Iron is a divalent cation. There is concern that iron may decrease the absorption of integrase inhibitors from the gastrointestinal tract through chelation (93578). One pharmacokinetic study shows that iron can decrease blood levels of the specific integrase inhibitor dolutegravir through chelation (94190). Also, other pharmacokinetic research shows that other divalent cations such as calcium can decrease the absorption and levels of some integrase inhibitors through chelation (93578,93579).
|
Iron might decrease levodopa levels by reducing its absorption.
Advise patients to separate doses of levodopa and iron as much as possible. There is some evidence in healthy people that iron forms chelates with levodopa, reducing the amount of levodopa absorbed by around 50% (9567). The clinical significance of this hasn't been determined.
|
Iron might decrease levothyroxine levels by reducing its absorption.
Advise patients to separate levothyroxine and iron doses by at least 2 hours. Iron can decrease the absorption and efficacy of levothyroxine by forming insoluble complexes in the gastrointestinal tract (9568).
|
Iron might decrease methyldopa levels by reducing its absorption.
|
Theoretically, iron might decrease mycophenolate mofetil levels by reducing its absorption.
Advise patients to take iron 4-6 hours before, or 2 hours after, mycophenolate mofetil. It has been suggested that a decrease of absorption is possible, probably by forming nonabsorbable chelates. However, mycophenolate pharmacokinetics are not affected by iron supplementation in available clinical research (3046,20152,20153,20154,20155).
|
Iron might decrease penicillamine levels by reducing its absorption.
Advise patients to separate penicillamine and iron doses by at least 2 hours. Oral iron supplements can reduce absorption of penicillamine by 30% to 70%, probably due to chelate formation. In people with Wilson's disease, this interaction has led to reduced efficacy of penicillamine (3046,3072,20156).
|
Iron might decrease levels of quinolone antibiotics by reducing their absorption.
|
Iron might decrease levels of tetracycline antibiotics by reducing their absorption.
Advise patients to take iron at least 2 hours before or 4 hours after tetracycline antibiotics. Concomitant use can decrease absorption of tetracycline antibiotics from the gastrointestinal tract by 50% to 90% (15).
|
Theoretically, taking Lacticaseibacillus casei with antibiotic drugs might decrease the effectiveness of L. casei.
L. casei preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. casei preparations by at least two hours.
|
Theoretically, taking Lacticaseibacillus paracasei with antibiotic drugs might decrease the effectiveness of L. paracasei.
L. paracasei preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. paracasei preparations by at least two hours.
|
Theoretically, taking Lactobacillus acidophilus with antibiotic drugs might decrease the effectiveness of L. acidophilus.
L. acidophilus preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. acidophilus preparations by at least two hours.
|
Theoretically, oats may have additive effects with antidiabetic agents and might increase the risk of hypoglycemia.
|
Concomitant use of oats and insulin might increase the risk of hypoglycemia.
In patients with insulin-dependent type 2 diabetes, taking oats 100 grams daily for 2 days reduces the insulin dose required to achieve metabolic control (103336).
|
Theoretically, taking antifungals with Saccharomyces boulardii might decrease the effectiveness of Saccharomyces boulardii.
S. boulardii is a live yeast. Therefore, simultaneously taking antifungals might kill a significant number of the organisms (4363).
|
Below is general information about the adverse effects of the known ingredients contained in the product Ultra Probiotic Formula. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, barley is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, bloating, flatulence, unpleasant taste. Allergic reactions in sensitive individuals.
Topically: Allergic reactions in sensitive individuals.
Dermatologic ...Topically, barley malt contained in beer has been reported to cause contact dermatitis (33762). After occupational exposure, barley has been reported to cause contact dermatitis of the eyelids and extremities, as well as contact urticaria (33735,33770,33774).
Gastrointestinal
...When consumed orally, barley provides fiber.
Increasing fiber in the diet can cause flatulence, bloating, abdominal distention, and unpleasant taste. To minimize side effects, doses should be slowly titrated to the desired level. Adverse effects usually subside with continued use (12514).
Barley contains gluten. In patients with biopsy-proven celiac disease, consuming barley can cause gastrointestinal upset and impairment of xylose excretion (33763,33772).
Immunologic
...Orally, consumption of beer has been reported to cause allergic reactions in sensitive individuals (33722,33724).
Symptoms included tingling in the face, lip, and tongue, angioedema, generalized urticaria, chest tightness, dyspnea, cough, fainting, and rhinoconjunctivitis. It can also cause anaphylaxis in sensitive individuals (317). Topically and with occupational exposure, barley has been reported to cause contact dermatitis and rash (33762,33735,33770,33774).
"Bakers' asthma" is an allergic response resulting from the inhalation of cereal flours by workers in the baking and milling industries, and has been reported to occur after barley flour exposure (1300,33756,33760). Cross-allergenicity has been shown to exist between different cereals (33758).
Pulmonary/Respiratory
..."Bakers' asthma" is an allergic response resulting from the inhalation of cereal flours by workers in the baking and milling industries, and has been reported to occur after barley flour exposure (1300,33756,33760).
Cross-allergenicity has been shown to exist between different cereals (33758).
By inhalation, barley flours may be a source of allergens in asthma (33764,33773). Inhalation of wild barley grass pollen may result in bronchial irritation or pneumonitis (33726,33755).
General
...Orally, Bifidobacterium lactis seems to be well tolerated by most patients.
Most Common Adverse Effects:
Orally: Diarrhea.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Dermatologic ...In clinical research, two cases of rash, one with itching, were reported by patients taking a combination of Bifidobacterium lactis BB-12, Lacticaseibacillus paracasei F19, and Lactobacillus acidophilus La5. However, it is not clear if these adverse effects were due to B. lactis, other probiotics, or the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium lactis in particular. When taken orally, B. lactis can cause diarrhea and other gastrointestinal complaints in children (3169,95381,105149). Gastrointestinal complaints including worsening diarrhea, abdominal pain, constipation, stomach burn, and flatulence have been reported rarely (110986,110999).
Immunologic
...There have been cases of Bifidobacterium bacteremia in critically ill patients (102416,107599).
These cases are rare and none seem to be due to Bifidobacterium lactis alone.
A specific preparation (NBL probiotic ATP, Nobel) containing B. lactis, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, fructo-oligosaccharides, galacto-oligosaccharides, colostrum, and lactoferrin was found to be a significant risk factor for vancomycin-resistant Enterococcus colonization in premature infants. Although there was no direct link to determine causation, it was hypothesized that the probiotic mixture helped to mediate the acquisition and transfer of antibiotic resistance genes (96890).
General
...Orally, Bifidobacterium bifidum seems to be well tolerated by most patients.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium bifidum in particular. One case of vomiting and fever has been reported in a clinical study for a single child taking B. bifidum and Lactobacillus acidophilus. It is unclear if the probiotics were the causal agent (90286).
Immunologic ...There have been cases of Bifidobacterium sepsis in critically ill patients (102416,107599). However, these cases are rare and none seem to be due to Bifidobacterium bifidum.
General
...Orally, Bifidobacterium breve seems to be well tolerated by most patients.
Serious Adverse Effects (Rare):
Orally: There is concern that B. breve may cause bacteremia in certain patients.
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium breve in particular.
Immunologic
...There have been rare cases of Bifidobacterium bacteremia related to probiotic use in critically ill infants and adults (102416,107597,107599).
In addition, cases of B. breve bacteremia have occurred in preterm infants or young children using probiotics (102416,107597). In a review of 298 term and preterm infants who were admitted to the neonatal intensive care unit of a hospital in Japan and received B. breve BBG-01 over a five-year period, bacteremia occurred in six patients (2%). Concomitant conditions included gastrointestinal perforation, food-induced enterocolitis syndrome, adhesive ileus, ileal volvulus, and aspiration pneumonia following esophageal atresia repair (107597). In one case report, B. breve BBG-01 was provided to an infant starting two days after birth and the day of surgery for an omphalocele. The infant also had bilious gastric fluid with elevated inflammatory markers. It is thought that the intestinal surgical repair might have led to the translocation of the ingested B. breve (107596).
Some cases of B. breve bacteremia do not seem to be directly related to probiotic use. There have been rare cases of B. breve bacteremia and necrotizing fasciitis in patients with type 2 diabetes. One patient had pre-existing chronic diabetic foot ulcers and the other had abscesses near the groin (111007,111011). A childhood history of frequent consumption of fermented beverages containing B. breve was thought to have resulted in B. breve in the intestinal flora of one of these patients, aged 42 years (111011). However, it is unclear if consumption of an unknown quantity of B. breve more than 20 years previously would play a role in this outcome. There is also a rare case of ventriculoperitoneal shunt B. breve infection possibly related to poor oral hygiene and dentition (111014).
General
...Orally, Bifidobacterium longum seems to be well tolerated by most patients.
Serious Adverse Effects (Rare):
Orally: There is concern that B. longum may cause bacteremia in certain patients.
Gastrointestinal ...When taken orally, abdominal discomfort, pain, and distension have been reported rarely (111773,111847,111856). Flatulence has been reported rarely with Bifidobacterium longum when used alone or in combination with other species of probiotics (107520,111773). Other rare gastrointestinal side effects have included constipation and gastrointestinal motor disorder (111773).
Immunologic ...There have been rare cases of Bifidobacterium bacteremia in critically ill infant and adult patients (102416,107599). Various cases of Bifidobacterium longum bacteremia, sometimes presenting as sepsis, have occurred in preterm infants using probiotics (102416,111610,111612,111850,111852,111853). In one case report, a 15-month-old female infant with congenital heart defects and recent surgery to replace a mechanical heart valve developed Bifidobacterium sepsis after being treated with IV antibiotics, extracorporeal membrane oxygenation (ECMO), and oral probiotics containing B. longum. It was thought that ECMO contributed to translocation of bifidobacteria from the gut and into the blood (102416). In 5 cases, very-low birthweight preterm infants developed B. longum bacteremia following the use of a specific probiotic product providing B. longum and Lactobacillus acidophilus (Infloran) for the prevention of necrotizing enterocolitis; antibiotic treatment was required in at least some of the cases (111850,111852,111853). Cases of sepsis related to B. longum have also occurred in adults; however, association with supplementation is unlikely. In one case, sepsis with B. longum occurred following acupuncture. This was likely due to needle contamination and not to supplementation (1236). In another case, a 71-year-old male with liver cirrhosis and prostate cancer developed B. longum lumbar vertebrodiscitis. The source was thought to be translocation from the intestine (111859). A 42-year-old male developed B. longum peritonitis secondary to intestinal perforation (111855).
Pulmonary/Respiratory ...When taken orally, a dry cough has been reported by a single patient in a clinical trial (111851).
Other ...When taken orally, weight gain has been reported by a single patient in a clinical trial (111773).
General
...Orally or intravenously, iron is generally well tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, gastrointestinal irritation, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about oral or gastric ulcerations.
Intravenously: Case reports have raised concerns about hypophosphatemia and osteomalacia.
Cardiovascular
...There is debate regarding the association between coronary heart disease (CHD) or myocardial infarction (MI) and high iron intake or high body iron stores.
Some observational studies have reported that high body iron stores are associated with increased risk of MI and CHD (1492,9542,9544,9545,15175). Some observational studies reported that only high heme iron intake from dietary sources such as red meat are associated with increased risk of MI and CHD (1492,9546,15174,15205,15206,91180). However, the majority of research has found no association between serum iron levels and cardiovascular disease (1097,1099,9543,9547,9548,9549,9550,56469,56683).
There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
There is also a case of a 56-year-old female, negative for HFE mutation homozygosity, diagnosed with acquired iron overload cardiomyopathy after starting ferrous sulfate 325 mg twice daily 3 years prior for iron deficiency secondary to alcoholic cirrhosis with esophageal varices and encephalopathy. The patient had no follow-up care over the 3 years and denied any blood transfusions over that time (113906).
Dermatologic ...Cutaneous hemosiderosis, or skin staining, has been reported following intravenous (IV) iron infusion in various case reports. Most of these cases are due to extravasation following iron infusion (112605,112611). In one case, extravasation has occurred following iron derisomaltose infusion in a 41-year-old female with chronic kidney disease (112605). Rarely, diffuse cutaneous hermosiderosis has occurred. In one case, a 31-year-old female with excessive sweating developed cutaneous hemosiderosis in the armpits following an (IV) iron polymaltose infusion (112611).
Endocrine
...Population research in females shows that higher ferritin levels are associated with an approximately 1.
5-fold higher odds of developing gestational diabetes. Increased dietary intake of heme-iron, but not non-heme iron, is also associated with an increased risk for gestational diabetes. The effects of iron supplementation could not be determined from the evaluated research (96618). However, in a sub-analysis of a large clinical trial in pregnant adults, daily supplementation with iron 100 mg from 14 weeks gestation until delivery did not affect the frequency or severity of glucose intolerance or gestational weight gain (96619).
Intravenous (IV) iron may trigger hypophosphatemia in some patients (113905). A meta-analysis of clinical studies in adults with iron deficiency anemia shows that IV ferric carboxymaltose is associated with a higher risk of hypophosphatemia when compared with other IV formulations (i.e. iron dextran, iron isomaltoside, iron sucrose, and ferumoxytol) (115899). Severe hypophosphatemia requiring IV phosphate has also occurred following IV ferric carboxymaltose (112608,112610).
Additionally, cases of osteomalacia related to hypophosphatemia subsequent to parenteral iron administration have been rarely reported (112603,112609).
Gastrointestinal
...Orally, iron can cause dry mouth, gastrointestinal irritation, heartburn, abdominal pain, constipation, diarrhea, nausea, or vomiting (96621,102864,104680,104684,110179,110185,110188,110189,110192,115894).
These adverse effects are uncommon at doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron in adults with normal iron stores (7135). Higher doses can be taken safely in adults with iron deficiency, but gastrointestinal side effects may occur (1095,20118,20119,56698,102864). Taking iron supplements with food seems to reduce gastrointestinal side effects (7135). However, food can also significantly reduce iron absorption. Iron should be taken on an empty stomach, unless it cannot be tolerated.
There are several formulations of iron products such as ferrous sulfate, ferrous gluconate, ferrous fumarate, and others. Manufacturers of some formulations, such as polysaccharide-iron complex products (Niferex-150, etc), claim to be better tolerated than other formulations; however, there is no reliable evidence to support this claim. Gastrointestinal tolerability relates mostly to the elemental iron dose rather than the formulation (17500).
Enteric-coated or controlled-release iron formulations might reduce nausea for some patients, however, these products also have lower absorption rates (17500).
Liquid oral preparations can blacken and stain teeth (20118).
Iron can also cause oral ulcerations and ulcerations of the gastric mucosa (56684,91182,96622,110179). In one case report, an 87-year-old female with Alzheimer disease experienced a mucosal ulceration, possibly due to holding a crushed ferrous sulfate 80 mg tablet in the mouth for too long prior to swallowing (91182). The ulceration was resolved after discontinuing iron supplementation. In another case report, a 76-year old male suffered gastric mucosal injury after taking a ferrous sulfate tablet daily for 4 years (56684). In a third case report, a 14-year-old female developed gastritis involving symptoms of upper digestive hemorrhage, nausea, melena, and stomach pain. The hemorrhage was attributed to supplementation with ferrous sulfate 2 hours after meals for the prior 2 weeks (96622). In one case report, a 43-year old female developed atrophic gastritis with non-bleeding ulcerations five days after starting oral ferrous sulfate 325 mg twice daily (110179).
Intravenously, iron can cause gastrointestinal symptoms such as nausea and diarrhea(104684,110192,115894).
Hematologic ...Orally, iron supplements have been associated with hemochromatosis. In one case report, a 56-year-old female, negative for HFE mutation homozygosity, was diagnosed with acquired hemochromatosis after starting ferrous sulfate 325 mg twice daily 3 years prior, without follow-up care, for a previous iron deficiency secondary to alcoholic cirrhosis with esophageal varices and encephalopathy (113906).
Immunologic
...Although there is some clinical research associating iron supplementation with an increased rate of malaria infection (56796,95432), the strongest evidence to date does not support this association, at least for areas where antimalarial treatment is available (95433,96623).
In an analysis of 14 trials, iron supplementation was not associated with an increased risk of malaria (96623). In a sub-analysis of 7 preliminary clinical studies, the effect of iron supplementation was dependent upon the access to services for antimalarial treatment. In areas where anemia is common and services are available, iron supplementation is associated with a 9% reduced risk of clinical malaria. In an area where services are unavailable, iron supplementation was associated with a 16% increased risk in malaria incidence (96623). The difference in these findings is likely associated with the use of malaria prevention methods.
A meta-analysis of clinical studies of all patient populations shows that administering intravenous (IV) iron, usually iron sucrose and ferric carboxymaltose, increases the risk of infection by 16% when compared with oral iron or no iron. However, sub-analyses suggest this increased risk is limited to patients with inflammatory bowel disease (IBD) (110186). Additionally, a meta-analysis in adults with cancer-associated anemia shows that IV iron does not increase the risk of infection when compared with oral iron or no iron therapy (115892).
Intravenously, iron has rarely resulted in allergic reactions, including anaphylactoid reactions (110185,110192,112606,112607). There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given IV ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Musculoskeletal ...Intravenous (IV) iron may trigger hypophosphatemia in some patients, and cases of osteomalacia related to hypophosphatemia subsequent to parenteral iron administration have been rarely reported (112609,113905). In one case, a 70-year-old male with a genetic hemorrhagic disorder infused with ferric carboxymaltose developed lower limb pain with hypophosphatemia and diffuse bone demineralization in the feet (112609). In a second case, a 61-year-old male developed femoral neck insufficiency fractures following repeated ferric carboxymaltose transfusions for anemia related to vascular malformation in the bowel (112603).
Oncologic
...There is a debate regarding the association between high levels of iron stores and cancer.
Data are conflicting and inconclusive (1098,1099,1100,1102). Epidemiological studies suggest that increased body iron stores may increase the risk of cancer or general mortality (56703).
Occupational exposure to iron may be carcinogenic (56691). Oral exposure to iron may also be carcinogenic. Pooled analyses of population studies suggest that increasing the intake of heme iron increases the risk of colorectal cancer. For example, increasing heme iron intake by 1 mg/day is associated with an 11% increase in risk (56699,91185).
Pulmonary/Respiratory ...Orally, iron has been associated with rare reports of iron pill aspiration. This occurs when all or part of the pill is aspirated into the lungs. Once in the lungs, it can cause a chemical burn of the bronchial mucosa. Dozens of cases of iron pill aspiration have been reported in individuals ranging in age from 22 months to 92 years. Patients presented with cough, dyspnea, wheezing, and hemoptysis. The hemoptysis led to death in 2 patients due to hemorrhage. Long-term complication of fibrosis and bronchial stenosis was reported in a few of the cases. In one case, a 48-year-old female accidentally aspirated a ferrous sulfate tablet and presented to the emergency department with cough, blood-stained sputum, chest pain, dyspnea, and acute distress. Bronchoscopy was performed, parts of the pill were retrieved, and chemical burns and necrotic tissue were observed in the bronchus intermedius mucosa and throughout the middle and lower lobes. Debridement with bronchoalveolar lavage was performed. The patient was transferred to the intensive care unit, placed on mechanical ventilation for 2 days, treated with corticosteroids, and discharged on the fifth day of hospitalization. Four weeks post-discharge the patient had significantly improved but still had some reduction in lung capacity.
Other ...Intravenously, sodium ferric gluconate complex (SFGC) caused drug intolerance reactions in 0. 4% of hemodialysis patients including 2 patients with pruritus and one patient each with anaphylactoid reaction, hypotension, chills, back pain, dyspnea/chest pain, facial flushing, rash and cutaneous symptoms of porphyria (56527).
General
...Orally, Lacticaseibacillus casei is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Serious Adverse Effects (Rare):
Orally: There is concern that lactobacilli may cause infections in some people.
Gastrointestinal ...Orally, taking Lacticaseibacillus casei in combination with other probiotics may cause gastrointestinal side effects including abdominal pain (90291); however, these events are uncommon.
Immunologic
...Since Lacticaseibacillus casei preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients.
Some lactobacilli species have been isolated in some cases of bacteremia, sepsis, splenic abscess, endocarditis, aortic dissection, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract. The majority of cases are not related to the use of probiotic supplements and most are not associated with the use of L. casei (107543,112516). There is at least one case of L. casei bacteremia and endocarditis thought to be related with L. casei intake in a 71-year-old immunocompromised female (112520).
There are two cases of L. casei infection in a prosthetic joint (90282,112514). In one case, the 95-year-old female with a history of hypertension, diabetes, and heart disease was known to consume yogurt containing L. casei. However, it was not confirmed that the infection was related to the consumption of this product. Spread from the gastrointestinal tract or vaginal flora could not be ruled out (90282). In the case of an 80-year-old male, the cause was unknown as there was no probiotic supplementation and no underlying medical condition or infectious portal of entry (112514).
A specific probiotic preparation (NBL probiotic ATP, Nobel) containing L. casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, fructo-oligosaccharides, galacto-oligosaccharides, colostrum, and lactoferrin was found to be a significant risk factor for vancomycin-resistant Enterococcus colonization in premature infants. Although there was no direct link to determine causation, it was hypothesized that the probiotic mixture helped to mediate the acquisition and transfer of antibiotic resistance genes (96890).
General
...Orally, Lacticaseibacillus paracasei is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Serious Adverse Effects (Rare):
Orally: There is concern that Lacticaseibacillus paracasei may cause infections in some people.
Dermatologic
...Orally, in one clinical trial, a combination of Lacticaseibacillus paracasei subsp.
paracasei F19, Lactobacillus acidophilus La-5, and Bifidobacterium animalis subsp. lactis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. paracasei, other ingredients, the combination, or if the events were idiosyncratic (90236).
Topically, a lotion containing the cell free supernatant of L. paracasei was rarely associated with erythema, itching, and scaling (111945).
Gastrointestinal
...Orally, taking Lacticaseibacillus paracasei alone or in combination with other probiotics may cause gastrointestinal side effects including dyspepsia (105133), flatulence (107497), nausea (111952), and bloating (107497,111952); however, these events are uncommon.
There are at least five case reports of acute cholecystitis for which a lactobacilli was thought to be the primary pathogen. In a 66-year-old female, vancomycin-resistant L. paracasei was the primary pathogen resulting in peritonitis secondary to a cholecystitis-induced gallbladder perforation. Although the patient reportedly ate 96-128 oz of yogurt each day, this yogurt was not believed to be associated with the cholecystitis (103443).
Immunologic ...Since Lacticaseibacillus paracasei preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. Lactobacilli species, including L. paracasei, have been isolated in some cases of bacteremia, sepsis, splenic abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, meningoencephalitis, and prosthetic joint infections. Most cases of L. paracasei infection are thought to be due to the translocation of bacteria from other locations in the body in which it occurs naturally, such as the oral cavity and gastrointestinal tract (107543,111942,111944,111946,90282). However, there are case reports of L. paracasei infections thought to be at least partially related to dietary or supplemental intake (90254,107546,95393). In a 77-year-old male who consumed yogurt containing L. paracasei daily, L. paracasei bacteremia with endocarditis was thought to be related to bacterial translocation from the colon following a colonoscopy (90254). In a 78-year-old male, L. paracasei bacteremia and endocarditis was thought to be related to daily use of probiotics; however, the specific species included in the product were not mentioned. Also, the patient was diagnosed with an aortic valve stenosis and had undergone dental treatment approximately 6 months previously, possibly increasing the risk for development of bacteremia (95393). In an immunocompetent 45-year-old male with no history of heart disease, consumption of yogurt containing L. paracasei for about 2.5 years was thought to be associated with the development of endocarditis (107546).
General
...Orally and intravaginally, Lactobacillus acidophilus is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Intravaginally: Vaginal discharge.
Serious Adverse Effects (Rare):
Orally: There is concern that L. acidophilus may cause infections in some people.
Dermatologic ...Orally, in one clinical trial, a combination of Lactobacillus acidophilus La-5, Lacticaseibacillus paracasei subsp. paracasei F19, and Bifidobacterium animalis subsp. lacltis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. acidophilus, other ingredients, the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Orally, taking Lactobacillus acidophilus in combination with other probiotics may cause gastrointestinal side effects including epigastric discomfort (90239), abdominal pain (90239,90291,111785), dyspepsia (90239), flatulence (107497,107520), bloating (107497,111785), diarrhea (111785), vomiting (107537), and burping (90239); however, these events are uncommon.
Genitourinary ...Intravaginally, cream containing Lactobacillus acidophilus has been shown to cause increased vaginal discharge in about 5% of patients, compared to about 1% of patients receiving placebo cream (90237). Vaginal burning was reported by one person using intravaginal L. acidophilus and Limosilactobacillus fermentum in a clinical trial (111781).
Immunologic ...Since Lactobacillus acidophilus preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. L. acidophilus has been isolated in some cases of bacteremia, sepsis, splenic abscess, liver abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract (107543,111782,111792). L. acidophilus endophthalmitis has been reported rarely (111787,111795). In one case, it was related to intravitreal injections for age-related macular degeneration in a 90-year-old female with an intraocular lens (111787). In another, it occurred following cataract surgery (111795).
General
...Orally, oats are well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, bloating, flatulence, and unpleasant taste.
Topically: Burning, contact dermatitis, itching, and redness.
Dermatologic ...Topically, oat-containing preparations can cause contact dermatitis (12515). Redness, burning, and itchiness have also been reported (103340).
Gastrointestinal
...When consumed orally, oats provide fiber.
Increasing fiber in the diet can cause flatulence, bloating, abdominal distention, and unpleasant taste. To minimize side effects, doses should be slowly titrated to the desired level. These adverse effects usually subside with continued use (12514).
In patients who have difficulty chewing food, or those with conditions that decrease small bowel motility, oat bran may cause bezoars (concretions) and intestinal obstruction. Oats and oat bran are unlikely to cause obstruction without other causative factors (4979,4985).
Immunologic ...In a case report, a 45-year-old male developed acute generalized urticaria, facial angioedema, and dyspnea immediately after consuming oat flour. The reaction resolved after emergency care for anaphylaxis. Further investigation revealed an IgE-mediated hypersensitivity reaction to oat proteins (113490).
General
...Orally, Saccharomyces boulardii is generally well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that Saccharomyces boulardii may cause fungemia in certain patients.
Gastrointestinal ...Rarely, oral use of Saccharomyces boulardii has caused gastrointestinal complaints, such as abdominal cramps, flatulence, nausea, vomiting, and decreased appetite (98731,107608).
Immunologic
...Rarely, oral use of Saccharomyces boulardii has been associated with fungemia in both immunocompromised and immunocompetent patients (1247,4357,4358,4360,7329,14459,72121,72126,72142,92809,95357,95363)(96277,105171,107604,107607).
Numerous cases of Saccharomyces fungemia have been reported in critically ill intensive care unit (ICU) patients, particularly those with indwelling or central venous catheters, those receiving enteral feeding, or those receiving broad-spectrum antibiotics. Most infections occurred when packets of Saccharomyces were used or when Saccharomyces capsules were opened at the bedside (12776,12777,14459,95358,95360,95362,95363,105171). Admission to the ICU and extended length of stay increase the risk of developing Saccharomyces fungemia (107604). In a hospitalized 1-year-old patient with severe malnutrition and multiple invasive devices, Saccharomyces cerevisiae fungemia developed 2 days after receiving a probiotic containing S. boulardii 200 mg twice daily for 4 days (96277). In addition, there are two case reports of S. cerevisiae fungemia in hospitalized and intubated older patients with COVID-19 who had been given S. boulardii for diarrhea (105171).
The true incidence of fungemia is difficult to determine with S. boulardii. Most clinical laboratories are unable to differentiate between S. boulardii and S. cerevisiae, which might come from other sources (7353). In two case reports of patients in the ICU, there was a 100% alignment of fungal ribosomal DNA ITS sequences between the strains found in the blood of the infected patients and the strains of S. boulardii that had been administered (105171). In a large analysis of hospitalized patients, the incidence rate of Saccharomyces fungemia was 0.11% of those given S. boulardii and did not occur in patients not given this probiotic. Packets or capsules opened at a distance from the patient in the hospital were included in this analysis (107604).
Positive Saccharomyces cultures have also been obtained rarely from other sites, such as the abdominal region and the oral or respiratory tract (107607).
An elevated erythrocyte sedimentation rate may occur when S. boulardii is used to treat Crohn disease (7646), but this effect may be a natural part of the disease process.