Each tablet contains: Vitamin A (100% as natural beta-carotene and mixed carotenoids) 500 IU • Calcium (as calcium carbonate, undecylanate, and caprylate complex) 100 mg • Zinc (as zinc caprylate complex) 0.3 mg • Pau d'Arco bark (tabebuia impetiginosa) 100 mg • Undecylenic Acid (as calcium undecylenate) 100 mg • Caprylic Acid Caprylic Acid (Form: from Magnesium Caprylate, and Calcium Caprylate) (as calcium, magnesium, and zinc caprylate complex) 75 mg • L-Glutamic Acid Hydrochloride 50 mg • Grapefruit 40:1 extract (citrus paradisi) 25 mg • Rosemary aerial parts oil 4:1 extract (rosmarinus officinalis) 1.5 mg • Thyme aerial parts oil 4:1 extract (thymus vulgaris) 1.5 mg. Other Ingredients: Microcrystalline Cellulose, Magnesium Stearate, Silica, Croscarmellose Sodium, Food Glaze.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Phytostan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Phytostan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Caprylic acid has Generally Recognized as Safe (GRAS) status in the US (19507).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Caprylic acid has been safely used in clinical research at a daily dose of 16 mg/kg for 20 days (97662,100176).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. Glutamine has been safely used in clinical research in doses up to 40 grams per day or 1 gram/kg daily (2334,2337,2338,2365,5029,5462,7233,7288,7293), (52288,52307,52308,52311,52313,52337,52349,52350,96516,97366). A specific glutamine product (Endari) is approved by the US Food and Drug Administration (FDA) (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 600 mg/kg daily in clinical trials (2363,2366,5448,5452,5453,5454,5458,7293,52272,52275), (52283,52289,52304,52306,52316,52341), (52359,52360,52371,52377,52381,52284,52385,52408,96637,96507,96516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Glutamine has been shown to be safe in clinical research when used in amounts that do not exceed 0.7 grams/kg daily in children 1-18 years old (11364,46657,52321,52323,52363,86095,96517). A specific glutamine product (Endari) is approved by the US Food and Drug Administration for certain patients 5 years of age and older (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 0.4 grams/kg daily in clinical research (52338,96508). There is insufficient reliable information available about the safety of glutamine when used in larger amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of glutamine when used in larger amounts as medicine during pregnancy or lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapefruit has Generally Recognized as Safe status (GRAS) in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. A grapefruit seed extract has been safely used in clinical research (5866). In addition, capsules containing grapefruit pectin 15 grams daily have been used in clinical research for up to 16 weeks (2216).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Preliminary population research shows that consuming a quarter or more of a whole grapefruit daily is associated with a 25% to 30% increased risk of postmenopausal breast cancer (14858). Grapefruit juice is thought to reduce estrogen metabolism resulting in increased endogenous estrogen levels. More evidence is needed to validate this finding.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of using medicinal amounts of grapefruit during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately (11726,11727,11728,11729,11730,93729). ...when used parenterally and appropriately (2275,2276,2278,11726,11727,11728,11729). There is insufficient reliable information available about the safety of MCTs when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY UNSAFE ...when used orally. The safety of pau d'arco in typical doses is unclear. Serious toxicities have been found with high doses of the lapachol constituent (91939). In patients with cancer, doses of lapachol above 1.5 grams daily were associated with significant gastrointestinal toxicities and an increased risk of bleeding (91939). However, in patients with dysmenorrhea, doses of pau d'arco 1050 mg plus rutin 75 mg daily for up to 8 weeks did not lead to serious adverse effects (114012). There is insufficient reliable information available about the safety of pau d'arco when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally in typical doses.
Animal studies have found that lapachol, a constituent of pau d'arco, has teratogenic and abortifacient effects (68314,68315); avoid using. There is insufficient reliable information available about the safety of pau d'arco when used topically in pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts typically found in foods. Rosemary has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the leaf is used orally and appropriately in medicinal amounts (18). Powdered rosemary leaf has been used with apparent safety as a single dose of up to 1.5 grams (18246,91731) or at a dose of 1-4 grams daily for up to 8 weeks (91727,98536,105327,109561). ...when the essential oil is used topically and appropriately for up to 7 months (5177,91729,109560). ...when the essential oil is used by inhalation as aromatherapy, short-term (7107,18323,105324,109559).
LIKELY UNSAFE ...when the essential oil or very large quantities of rosemary leaf are used orally. Ingestion of undiluted rosemary oil or very large quantities of rosemary leaf can cause serious adverse effects (18,515).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Rosemary might have uterine and menstrual flow stimulant effects (4,12,18), and might increase metabolism of estradiol and estrone (18331); avoid using. There is insufficient reliable information available about the safety of rosemary when used topically during pregnancy.
LACTATION:
There is insufficient reliable information available about the safety of using rosemary in medicinal amounts during lactation; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Thyme has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when thyme is used orally and appropriately in supplemental amounts. Orally, thyme, in combination with other herbs, has been used safely for up to 23 days (13557,49219,49223,78133). ...when diluted thyme oil is used topically, short-term. Diluted thyme oil has been used with apparent safety for up to 7 months (5177). There is insufficient reliable information available about the safety of thyme oil when used orally or when inhaled.
CHILDREN: LIKELY SAFE
when used in amounts commonly found in foods.
Thyme has Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY SAFE
when thyme is used orally in medicinal amounts in combination with English ivy.
Thyme has been used with apparent safety in combination with English ivy for up to 10 days (78181).
There is insufficient reliable information available about the safety of thyme oil when used orally or topically in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods.
Thyme has Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of thyme when used in medicinal amounts during pregnancy and breast-feeding; avoid using.
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe in adults when taken in doses below the tolerable upper intake level (UL) of 10,000 IU (3000 mcg) daily (7135). Higher doses increase the risk of side effects. In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake refer to pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
POSSIBLY SAFE ...when used topically and appropriately, short-term. Retinol up to 0.5% has been used on the skin daily for up to 12 weeks with apparent safety. No serious adverse effects have been reported in clinical trials (103671,103680,114500).
POSSIBLY UNSAFE ...when used orally in high doses. Doses higher than the UL of 10,000 IU (3000 mcg) per day of pre-formed vitamin A (retinol or retinyl ester) might increase the risk of side effects (7135). While vitamin A 25,000 IU (as retinyl palmitate) daily for 6 months followed by 10,000 IU daily for 6 months has been used with apparent safety in one clinical trial (95052), prolonged use of excessive doses of vitamin A can cause hypervitaminosis A (7135). The risk for developing hypervitaminosis A is related to total cumulative dose of vitamin A rather than a specific daily dose (1467,1469). In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). There is insufficient reliable information available about the safety of using sublingual formulations of vitamin A.
CHILDREN: LIKELY SAFE
when used orally or intramuscularly and appropriately.
The amount of pre-formed vitamin A (retinol or retinyl ester) that is safe depends on age. For children up to 3 years of age, doses less than 2000 IU (600 mcg) per day seem to be safe. For children ages 4 to 8, doses less than 3000 IU (900 mcg) per day seem to be safe. For children ages 9 to 13, doses less than 5667 IU (1700 mcg) per day seem to be safe. For children 14 to 18, doses less than 9333 IU (2800 mcg) per day seem to be safe (7135). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount for determining safety.
CHILDREN: POSSIBLY UNSAFE
when pre-formed vitamin A (retinol or retinyl ester) is used orally in excessive doses.
For children up to 3 years of age, avoid doses greater than 2000 IU (600 mcg) per day. For children ages 4 to 8, avoid doses greater than 3000 IU (900 mcg) per day. For children ages 9 to 13, avoid doses greater than 5667 IU (1700 mcg) per day. For children ages 14 to 18, avoid doses greater than 9333 IU (2800 mcg) per day (7135). Higher doses of vitamin A supplementation have been associated with increased risk of side effects such as pneumonia, bone pain, and diarrhea (319,95051). Long-term supplementation with low to moderate doses on a regular basis can cause severe, but usually reversible, liver damage (11978).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally or intramuscularly and appropriately.
Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe during pregnancy and lactation when used in doses less than 10,000 IU (3000 mcg) per day in adults 19 years of age and older and 2800 mcg daily in those 14-18 years of age (7135,16823,107293). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally or intramuscularly in excessive doses.
Daily intake of greater than 10,000 IU (3000 mcg) can cause fetal malformations (3066,7135). Excessive dietary intake of vitamin A has also been associated with teratogenicity (11978). The first trimester of pregnancy seems to be the critical period for susceptibility to vitamin A-associated birth defects such as craniofacial abnormalities and abnormalities of the central nervous system (7135). Pregnant patients should monitor their intake of pre-formed vitamin A (retinol or retinyl ester). This form of vitamin A is found in several foods including animal products, particularly fish and animal liver, some fortified breakfast cereals, and dietary supplements (3066).
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product Phytostan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, caprylic acid might increase the risk of hypotension when used with antihypertensive drugs.
Animal research suggests that caprylic acid might have positive inotropic effects, resulting in reduced arterial pressure and vascular resistance and increased cardiac output (25805).
|
Theoretically, caprylic acid might increase plasma concentrations of NSAIDs.
|
Theoretically, caprylic acid might increase plasma concentrations of warfarin.
In vitro research suggests that high doses of caprylic acid might displace warfarin from albumin binding sites (25807). This effect has not been reported in humans.
|
Theoretically, glutamine might antagonize the effects of anticonvulsant medications.
|
Grapefruit juice can decrease blood levels of acebutolol, potentially decreasing the clinical effects of acebutolol.
Clinical research shows that grapefruit juice can modestly decrease acebutolol levels by 7% and reduce peak plasma concentration by 19% by inhibiting organic anion transporting polypeptide (OATP) (17603,18101). The acebutolol half-life is also extended by 1.1 hours when grapefruit juice is consumed concomitantly (18101). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of aliskiren, potentially decreasing the clinical effects of aliskiren.
Clinical research shows that grapefruit juice can decrease aliskiren levels by approximately 60% by inhibiting organic anion transporting polypeptide (OATP) (91428). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of amiodarone, potentially increasing the effects and adverse effects of amiodarone.
|
Grapefruit juice might decrease blood levels of amprenavir, although this is not likely to be clinically significant.
Some clinical research shows that grapefruit juice can slightly decrease amprenavir levels (17673); however, this is probably not clinically significant.
|
Grapefruit juice can increase blood levels of oral artemether, potentially increasing the effects and adverse effects of artemether.
|
Grapefruit juice might increase blood levels of some oral benzodiazepines, potentially increasing the effects and adverse effects of these drugs.
Clinical research shows that grapefruit juice can increase plasma triazolam concentrations. Repeated consumption of grapefruit juice greatly increases triazolam concentrations and prolongs the half-life, probably due to inhibition of cytochrome P450 3A4 (CYP3A4) (7776,22118,22131,22133). Some studies show that grapefruit juice, particularly when taken in large quantities, reduces the clearance and increases the maximum blood levels, area under the plasma concentration curve (AUC), and duration of effect of midazolam. However, there is no effect on intravenous midazolam (4300,10159,11275,17601,22117,22119,16711,91427,95978). Grapefruit juice has also been shown to increase the maximum blood levels and duration of effect of diazepam, but the clinical significance of this is not known (3228). This interaction does not appear to occur with alprazolam (17674).
|
Grapefruit juice can increase blood levels of blonanserin, potentially increasing the effects and adverse effects of blonanserin.
Blonanserin is metabolized primarily by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral blonanserin increases exposure to blonanserin almost 6-fold due to inhibition of intestinal CYP3A4 by grapefruit juice and prolongs the elimination half-life of blonanserin by 2.2-fold due to inhibition of hepatic CYP3A4 by grapefruit juice (96943).
|
Grapefruit juice can increase blood levels of budesonide, potentially increasing the effects and adverse effects of budesonide.
Budesonide is metabolized by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral budesonide increases the plasma concentration of budesonide. This effect is attributed to grapefruit-induced inhibition of CYP3A4 in both the colon and small intestine (91425).
|
Grapefruit juice can increase blood levels of buspirone, potentially increasing the effects and adverse effects of buspirone.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of buspirone (3771).
|
Grapefruit juice can decrease the clearance of caffeine, potentially increasing the effects and adverse effects of caffeine.
Clinical research shows that grapefruit juice decreases caffeine clearance (4300).
|
Grapefruit juice can increase blood levels of oral calcium channel blockers, potentially increasing the effects and adverse effects of these drugs.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of amlodipine (523), nifedipine (528,22114), nisoldipine (529), verapamil (7779,8285), felodipine, nimodipine, nicardipine, diltiazem, pranidipine, nitrendipine, and manidipine (524,528,1388,4300,7780,11276,22136,53338,22138,22139) (22140,22141,22142,22143,22147,22148,22149,53367,22158),
This interaction is likely the result of the inhibition of intestinal metabolism of these drugs by CYP3A4 (7779,7780), although some research suggests grapefruit may alter plasma drug levels by reducing the rate of gastric emptying (22167). Consuming grapefruit juice 1 liter daily increases steady state concentrations of verapamil by as much as 50% (8285). However, some references dispute the clinical relevance of the interactions with amlodipine, diltiazem, and verapamil (3230,4300,22159). Other research in healthy individuals suggests plasma levels of felodipine and nifedipine are not affected when given intravenously (22144,22146). There is considerable interindividual variability in the effect of grapefruit juice on drug metabolism, which might account for inconsistent study results (7777,7779,8285). In healthy older adults, the hemodynamic response to felodipine plus grapefruit juice might be influenced by altered autonomic regulation. In older healthy adults, a single dose of grapefruit juice and felodipine enhanced the blood pressure-lowering effects of felodipine. However, after a week of grapefruit juice and felodipine (steady state), the hypotensive activity was reduced, possibly due to compensatory tachycardia (1392). Research indicates it is necessary to withhold grapefruit juice for as long as 3 days to avoid interactions with felodipine and nisoldipine (5068,5069,6453,22145).
|
Grapefruit juice can increase blood levels of carbamazepine, potentially increasing the effects and adverse effects of carbamazepine.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of carbamazepine (524).
|
Grapefruit juice can increase blood levels of carvedilol, potentially increasing the effects and adverse effects of carvedilol.
Clinical research shows that grapefruit juice increases the bioavailability of a single dose of carvedilol by 16% (5071).
|
Grapefruit juice can decrease blood levels of celiprolol, potentially decreasing the clinical effects of celiprolol.
In human research, taking grapefruit juice within two hours of celiprolol appears to decrease absorption and blood levels of celiprolol by approximately 85% (91421). This interaction is due to grapefruit-induced inhibition of organic anion transporting polypeptide (OATP) (17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of cisapride, potentially increasing the effects and adverse effects of cisapride.
|
Theoretically, grapefruit juice might increase blood levels of clomipramine, potentially increasing the effects and adverse effects of clomipramine.
Case reports have shown that clomipramine trough levels increase significantly after the addition of grapefruit juice to the therapeutic regimen (5064).
|
Grapefruit juice can decrease blood levels of the active metabolite of clopidogrel, thereby decreasing the antiplatelet effect of clopidogrel.
Clopidogrel is an antiplatelet prodrug that is metabolized primarily by cytochrome P450 2C19 (CYP2C19) to form the active metabolite. A small clinical study shows that taking grapefruit juice with clopidogrel decreases plasma levels of the active metabolite by more than 80% and impairs the antiplatelet effect of clopidogrel. This effect is possibly due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase blood levels of colchicine, potentially increasing the effects and adverse effects of colchicine.
Colchicine is an alkaloid that undergoes P-glycoprotein (P-gp) mediated drug efflux in the intestines, followed by metabolism by cytochrome P450 3A4 (CYP3A4). There is concern that grapefruit juice will increase the effects and adverse effects of colchicine due to grapefruit-induced inhibition of P-gp and/or CYP3A4. In vitro evidence shows that grapefruit juice increases absorption of colchicine by inhibiting P-gp (94158). A case of acute colchicine toxicity has been reported for an 8-year-old female who drank grapefruit juice while taking high-dose colchicine, long-term (94157). However, one small clinical study in healthy adults shows that drinking grapefruit juice 240 mL twice daily for 4 days does not affect the bioavailability or adverse effects of a single dose of colchicine 0.6 mg taken on the fourth day (35762).
|
Grapefruit juice can increase blood levels of oral cyclosporine, potentially increasing the effects and adverse effects of cyclosporine.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP1A2.
In vitro research suggests that grapefruit juice might inhibit CYP1A2 enzymes (12479). So far, this interaction has not been reported in humans.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C19.
In vitro research suggests that grapefruit juice might inhibit CYP2C19 enzymes (12479). Also, a small clinical study shows that taking grapefruit juice with clopidogrel, an antiplatelet prodrug that is metabolized primarily by CYP2C19, decreases plasma levels of the active metabolite and impairs the antiplatelet effect of clopidogrel. This effect is likely due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C9.
In vitro research suggests that grapefruit juice might inhibit CYP2C9 enzymes (12479). So far, this interaction has not been reported in humans.
|
Grapefruit juice can increase levels of drugs metabolized by CYP3A4.
Clinical research shows that grapefruit juice can inhibit CYP3A4 metabolism of drugs, causing increased drug levels and potentially increasing the risk of adverse effects (3227,3774,8283,8285,8286,22129,91427,104190). When taken orally, effects of grapefruit juice on CYP3A4 levels appear to last at least 48 hours (91427). Grapefruit's ability to inhibit CYP3A4 has even been harnessed to intentionally increase levels of venetoclax, which is metabolized by CYP3A4, in an elderly patient with acute myeloid leukemia who could not afford full dose venetoclax. The lower dose of venetoclax in combination with grapefruit juice resulted in serum levels of venetoclax in the therapeutic reference range of full dose venetoclax and positive treatment outcomes for the patient (112287).
Professional consensus recommends the consideration of patient age, existing medical conditions, additional medications, and the potential for additive adverse effects when evaluating the risks of concomitant use of grapefruit juice with any medication metabolized by CYP3A4. While all patients are at risk for interactions with grapefruit juice consumption, patients older than 70 years of age and those taking multiple medications are at the greatest risk for a serious or fatal interaction with grapefruit juice (95970,95972). |
Grapefruit juice can increase blood levels of dapoxetine, potentially increasing the effects and adverse effects of dapoxetine.
Pharmacokinetic research shows that drinking grapefruit juice 250 mL prior to taking dapoxetine 60 mg can increase the maximum plasma concentration of dapoxetine by 80% and prolong the elimination half-life by 43%. This effect is attributed to the inhibition of both intestinal and hepatic cytochrome P450 3A4 (CYP3A4) by grapefruit (95975).
|
Grapefruit juice can increase blood levels of dextromethorphan, potentially increasing the effects and adverse effects of dextromethorphan.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism, causing increased dextromethorphan levels (11362).
|
Theoretically, grapefruit juice may increase the levels and clinical effects of empagliflozin.
Animal research suggests grapefruit juice increases the peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of empagliflozin, possibly due to inhibition of metabolism by uridine diphosphoglucuronosyl transferase (UGT) (115467). This effect has not been reported in humans.
|
Grapefruit juice can increase blood levels of erythromycin, potentially increasing the effects and adverse effects of erythromycin.
Clinical research shows that concomitant use of erythromycin with grapefruit can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of erythromycin, increasing plasma concentrations of erythromycin by 35% (8286).
|
Grapefruit juice can increase blood levels of estrogens, potentially increasing the effects and adverse effects of estrogens.
Clinical research shows that grapefruit increases the levels of endogenous and exogenous estrogens by inhibiting cytochrome P450 3A4 (CYP3A4) enzymes (525,526,14858). Grapefruit juice increases exogenously administered 17-beta-estradiol by about 20% in females without ovaries and ethinyl-estradiol in healthy females (525,526,22160).
|
Grapefruit juice can decrease blood levels of etoposide, potentially decreasing the clinical effects of etoposide.
Clinical research shows that grapefruit juice decreases the absorption and plasma concentrations of etoposide. There is some evidence that grapefruit juice co-administered with oral etoposide can reduce levels of etoposide by about 26% (8744). Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of fexofenadine, thereby decreasing the clinical effects of fexofenadine.
Clinical research shows that grapefruit juice can significantly decrease oral absorption and blood levels of fexofenadine. In one study, consuming a drink containing grapefruit juice 25% decreased bioavailability of fexofenadine by about 24%. Consuming a full-strength grapefruit juice drink reduced bioavailability by 67% (7046). In another study, consuming grapefruit juice 300 mL decreased fexofenadine levels by 42%. Consuming 1200 mL of grapefruit juice reduced levels by 64% (17602). Similarly, drinking grapefruit juice 240 mL decreased the oral bioavailability of fexofenadine by 25% in another pharmacokinetic study (112288). Fexofenadine manufacturer data indicates that concomitant administration of grapefruit juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that grapefruit also reduces the clinical response to fexofenadine (17603).
Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604). |
Grapefruit juice can increase blood levels of fluvoxamine, potentially increasing the effects and adverse effects of fluvoxamine.
Clinical research shows that grapefruit juice inhibits metabolism and increases fluvoxamine levels and peak concentration (17675).
|
Grapefruit juice can increase blood levels of halofantrine, potentially increasing the effects and adverse effects of halofantrine.
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism, which increases halofantrine levels and peak concentration, as well as a marker of ventricular tachyarrhythmia potential (22129).
|
Grapefruit juice can increase blood levels of statins that are metabolized by cytochrome P450 3A4 (CYP3A4), potentially increasing the effects and adverse effects of these statins. Additionally, grapefruit juice might interfere with the bioavailability of statins that are substrates of organic anion transporting polypeptides (OATP).
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption and plasma concentrations of statins that are metabolized by CYP3A4. These include lovastatin (527,11274), simvastatin (3774,7782,22127), and atorvastatin (3227,12179,22126). Keep in mind that there is considerable variability in the effect of grapefruit juice on drug metabolism, so individual patient response is difficult to predict (7777,7781).
Some statins, including pravastatin, fluvastatin, pitavastatin, and rosuvastatin, are not metabolized by CYP3A4. However, grapefruit juice might still affect the bioavailability of these statins. These statins are substrates of OATP. Grapefruit juice can inhibit OATP. Therefore, grapefruit juice may reduce the bioavailability or increase drug levels of these statins depending on the type of OATP. However, grapefruit juice affects OATP for only a short time. Therefore, separating drug administration by at least 4 hours is likely to avoid this interaction (3227,12179,17601,22126,91420). |
Grapefruit juice can interfere with itraconazole absorption, although the clinical significance of this interaction is unclear.
|
Grapefruit juice can decrease blood levels of levothyroxine, potentially decreasing the effectiveness of levothyroxine.
Clinical research shows that grapefruit juice modestly decreases levothyroxine levels by 11% by inhibiting organic anion transporting polypeptide (OATP) (17604,22163). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of the active metabolite of losartan, potentially decreasing the clinical effects of losartan.
Losartan is an inactive prodrug which must be metabolized to its active form, E-3174, to be effective. In one human study, grapefruit juice reduced losartan metabolism, increased losartan AUC, and reduced the AUC of the major active losartan metabolite, E-3174 (1391).
|
Grapefruit juice can increase blood levels of methadone, potentially increasing the effects and adverse effects of methadone.
Clinical research shows that grapefruit juice inhibits the metabolism of methadone, increasing methadone levels and peak concentrations (17676). In one case, a 51-year-old male taking methadone 90 mg daily and no other medications was found unresponsive. The patient reported drinking grapefruit juice 500 mL daily for 3 days prior to the event. Methadone is a substrate of cytochrome P450 3A4 (CYP3A4), and grapefruit juice-induced inhibition of CYP3A4 is the likely cause of this interaction (102056).
|
Grapefruit juice can increase blood levels of methylprednisolone, potentially increasing the effects and adverse effects of methylprednisolone.
Clinical research shows that grapefruit juice can increase the plasma concentration of orally administered methylprednisolone. Grapefruit juice 200 mL three times daily given with methylprednisolone 16 mg increased methylprednisolone half-life by 35%, peak plasma concentration by 27%, and total area under the curve by 75% (3123).
|
Grapefruit juice might decrease blood levels of nadolol, potentially decreasing the clinical effects of nadolol.
Nadolol is a substrate of organic anion transporting polypeptide 1A2 (OATP1A2) (17603,17604,22161). Some research shows that grapefruit juice and its constituent naringin can inhibit organic anion transporting polypeptides (OATP), which can reduce the bioavailability of OATP substrates (17603,17604,22161,91427). However, preliminary clinical research shows that grapefruit juice containing a low amount of naringin does not significantly affect levels of nadolol (91422). It is not known if grapefruit juice containing higher amounts of naringin reduces the bioavailability of nadolol.
|
Grapefruit juice can increase blood levels of nilotinib, potentially increasing the effects and adverse effects of nilotinib.
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption of nilotinib. Grapefruit juice increases nilotinib levels by 29% and peak concentration by 60% (17677).
|
Grapefruit juice can decrease levels of drugs that are substrates of OATP.
In vitro and clinical research show that consuming grapefruit juice inhibits OATP, which reduces the bioavailability of oral drugs that are substrates of OATP. Various clinical studies have shown reduced absorption of OATP substrates when taken with grapefruit, including fexofenadine, acebutolol, aliskiren, celiprolol, levothyroxine, nadolol, and pitavastatin (17603,17604,18101,22126,22134,22161,22163,91420,91427,91428,112288). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of oxycodone, potentially increasing the effects and adverse effects of oxycodone.
Oxycodone is metabolized by both cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6). A small clinical study shows that grapefruit juice can increase plasma levels of oral oxycodone about 1.7-fold by inhibiting CYP3A4. While the analgesic effects of oxycodone do not seem to be affected, taking grapefruit juice along with oxycodone may theoretically increase the adverse effects of oxycodone (91423).
|
Grapefruit juice does not seem to affect renal P-glycoprotein (P-gp). Theoretically, it might inhibit intestinal P-gp, but evidence is conflicting.
While most in vitro research shows that grapefruit products inhibit P-gp, (1390,11270,11278,11362,95976), research in humans is less clear. Two small clinical studies in healthy adults using digoxin as a probe substrate show that grapefruit juice does not inhibit P-gp in the kidneys (11277,11282). It is unclear whether this applies to intestinal P-gp, for which digoxin is not considered to be a sensitive probe (105568). Grapefruit juice has been shown to reduce levels of fexofenadine (7046,17602,112288), and increase levels of quinidine (5067,22121). However, as both of these drugs are also substrates of other enzymes and transporters, it is unclear what role, if any, intestinal P-gp has in these findings.
|
Grapefruit juice can increase blood levels of pitavastatin, potentially increasing the effects and adverse effects of pitavastatin.
Pharmacokinetic research shows that taking grapefruit juice with pitavastatin 2-4 mg can increase blood levels of pitavastatin by 13% to 14%. Unlike simvastatin and atorvastatin, pitavastatin is not significantly metabolized by cytochrome P450 3A4 (CYP3A4) enzymes. Grapefruit juice appears to increase levels of pitavastatin by inhibiting its uptake by organic anion transporting polypeptide 1B1 (OATP1B1) into hepatocytes for metabolism and clearance from the body (22126,91420). Grapefruit juice seems to increase levels of pitavastatin to a greater degree in patients homozygous for a specific polymorphism (388A>G) in the OATP1B1 gene compared to those heterozygous for this polymorphism (91420).
|
Grapefruit juice can decrease blood levels of the active metabolite of prasugrel, thereby decreasing the antiplatelet effect of prasugrel.
Prasugrel is a prodrug that is metabolized by cytochrome P450 3A4 (CYP3A4) into its active metabolite. A small pharmacokinetic study in healthy volunteers shows that drinking grapefruit juice 200 mL three times daily for 4 days and taking a single dose of prasugrel 10 mg with an additional 200 mL of grapefruit juice on day 3, results in a 49% lower peak plasma level and a 26% lower overall plasma exposure to the active metabolite when compared with drinking water. However, despite the reduced exposure, platelet aggregation seems to be reduced by an average of only 5% (105567). The clinical significance of this interaction is unclear.
|
Grapefruit juice can increase blood levels of praziquantel, potentially increasing the effects and adverse effects of praziquantel.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of praziquantel. Plasma concentrations of praziquantel can increase by as much as 160% when administered with 250 mL of commercially available grapefruit juice (8282).
|
Grapefruit juice may increase blood levels of primaquine, potentially increasing the effects and adverse effects of primaquine.
Clinical research shows that grapefruit juice increases the bioavailability of primaquine by approximately 20% (22130). The clinical significance of this interaction is not clear.
|
Grapefruit or grapefruit juice, especially if consumed in large amounts, can cause additive QT interval prolongation when taken with QT interval-prolonging drugs, potentially increasing the risk of ventricular arrhythmias.
Clinical research in healthy volunteers shows that drinking 6 liters of grapefruit juice over 6 hours prolonged the QTc by a peak amount of 14 milliseconds (ms). This prolongation was similar to the QT prolongation caused by the drug moxifloxacin. In individuals with long QT syndrome, a smaller dose of grapefruit juice, 1.5 liters, resulted in a greater peak QTc prolongation of about 30 ms (100249). The effect of smaller quantities of grapefruit juice on the QT interval is unclear.
|
Grapefruit juice may increase blood levels of quetiapine, increasing the effects and adverse effects of quetiapine.
Quetiapine is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4 (3227,3774,8283,8285,8286,22129,91427,104190). In one case report, a healthy 28-year-old female with bipolar disorder stabilized on quetiapine 800 mg daily presented with quetiapine toxicity considered to be related to consuming a gallon of grapefruit juice over the past 24 hours (108848).
|
Grapefruit juice can alter blood levels of quinidine, potentially increasing or decreasing the clinical effects of quinidine.
|
Theoretically, grapefruit juice may increase the concentration and clinical effects of rivaroxaban.
Rivaroxaban is metabolized partially by cytochrome P450 3A4 (CYP3A4). Grapefruit juice can inhibit CYP3A4. Animal research shows that grapefruit juice increases the peak plasma concentration (Cmax) of rivaroxaban by about four-fold, without increasing the area under the drug concentration-time curve (AUC) (115468).
|
Grapefruit juice can increase blood levels of saquinavir, potentially increasing the effects and adverse effects of saquinavir.
|
Grapefruit juice can increase blood levels of scopolamine, potentially increasing the effects and adverse effects of scopolamine.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of scopolamine, increasing its absorption and plasma concentrations. Oral bioavailability of scopolamine can increase by 30% when administered with 150 mL of grapefruit juice (8284).
|
Grapefruit juice can increase blood levels of sertraline, potentially increasing the effects and adverse effects of sertraline.
Clinical research shows that grapefruit juice inhibits the cytochrome P450 3A4 (CYP3A4) metabolism of sertraline, increasing blood levels of sertraline (22122).
|
Grapefruit juice can increase blood levels of sildenafil, potentially increasing the effects and adverse effects of sildenafil.
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism of sildenafil, increasing its absorption and plasma concentrations. Oral bioavailability of sildenafil can increase by 23% when administered with 500 mL of commercially available grapefruit juice (8283).
|
Grapefruit juice may slightly increase blood levels of sunitinib, potentially increasing the effects and adverse effects of sunitinib.
Sunitinib is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit and grapefruit juice can inhibit CYP3A4 and increase levels of some drugs metabolized by this enzyme. One small clinical study shows that drinking 200 mL of grapefruit juice three times daily can increase the bioavailability of sunitinib by 11% (91429). While this effect is unlikely to be clinically significant, patients should use caution when using grapefruit along with sunitinib. Dose adjustments may be necessary.
|
Grapefruit juice can increase blood levels of tacrolimus, potentially increasing the effects and adverse effects of tacrolimus.
Clinical research shows that drinking grapefruit juice 200 mL daily while taking tacrolimus 3 mg daily increases the trough blood concentration of tacrolimus by approximately 3-fold in patients with connective tissue diseases (95974). A single case has also reported a 10-fold increase in tacrolimus trough levels after the ingestion of grapefruit juice over 3 days (22122). This effect is attributed to the inhibition of cytochrome P450 3A4 (CYP3A4) by grapefruit (95974).
|
Theoretically, grapefruit juice might increase blood levels of tadalafil, potentially increasing the effects and adverse effects of tadalafil.
Animal research shows that grapefruit juice increases tadalafil serum concentrations and overall exposure, likely through inhibition of cytochrome P450 3A4 enzymes (104189).
|
Grapefruit juice might decrease blood levels of talinolol, potentially decreasing the clinical effects of talinolol.
Clinical research suggests that grapefruit juice reduces talinolol bioavailability, likely by inhibiting intestinal uptake (22135). The clinical significance of this effect is unclear.
|
Grapefruit juice can increase blood levels of terfenadine, potentially increasing the effects and adverse effects of terfenadine.
|
Grapefruit juice can decrease blood levels of theophylline, potentially decreasing the effectiveness of theophylline.
Clinical research shows that grapefruit juice seems to modestly decrease theophylline levels when given concurrently with sustained-release theophylline (11013). The mechanism of this interaction is unknown.
|
Grapefruit juice can increase blood levels of ticagrelor, thereby increasing the effects and adverse effects of ticagrelor.
Ticagrelor is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that taking grapefruit juice with ticagrelor increases blood levels of ticagrelor more than two-fold and increases the antiplatelet activity of ticagrelor (91418). Additionally, animal research shows that grapefruit juice increases peak plasma concentration (Cmax) and the area under the drug concentration-time curve (AUC) of ticagrelor (115468).
|
Grapefruit juice can increase blood levels of tolvaptan, potentially increasing the effects and adverse effects of tolvaptan.
Tolvaptan is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that grapefruit juice can increase the bioavailability and blood levels of tolvaptan by approximately 1.6-fold for up to 16 hours (91426).
|
Theoretically, drinking large amounts of grapefruit juice might increase the effects and adverse effects of warfarin.
In one case report, a patient experienced significantly increased international normalized ratio (INR) associated with consumption of 50 ounces of grapefruit juice daily (12061). However, smaller amounts of grapefruit juice might not be a problem. In a small clinical trial, consumption of 24 ounces of grapefruit juice daily for one week had no effect on INR in males treated with warfarin (12063).
|
Theoretically, pau d'arco might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
In vitro research shows that pau d'arco reduces platelet aggregation and may interfere with vitamin K (18057,68319). One clinical study shows that taking the lapachol constituent of pau d'arco in doses above 1.5 grams daily increases the risk of bleeding (91939). The effects of whole pau d'arco or pau d'arco extract in humans are unclear.
|
Theoretically, rosemary may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking rosemary with antidiabetes drugs might increase the risk of hypoglycemia.
Animal research shows that rosemary extract can decrease blood glucose levels in diabetic models (71821,71923). However, research in humans is conflicting. Although rosemary powder decreased blood glucose levels in healthy adults (105327), no change in blood glucose levels was seen in adults with type 2 diabetes, most of whom were taking antidiabetes drugs (105323,105327).
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as aspirin.
Rosemary is reported to contain salicylates (18330).
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as choline magnesium trisalicylate.
Rosemary is reported to contain salicylate (18330).
|
Theoretically, rosemary might decrease the levels and clinical effects of CYP1A1 substrates.
|
Theoretically, rosemary might decrease the levels and clinical effects of CYP1A2 substrates.
|
Theoretically, rosemary might have additive effects with salicylate-containing drugs such as salsalate.
Rosemary is reported to contain salicylate (18330).
|
Theoretically, concurrent use of anticholinergic drugs and thyme essential oil might reduce the effects of anticholinergic drugs.
In vitro evidence suggests that thyme essential oil and specific essential oil constituents like thymohydroquinone and carvacrol can inhibit acetylcholinesterase (AChE) (78155). However, this effect has not been observed in humans.
|
Theoretically, thyme leaf extract might have additive effects with anticoagulant or antiplatelet drugs.
|
Theoretically, concurrent use of cholinergic drugs and thyme essential oil might cause additive cholinergic effects.
In vitro evidence suggests that thyme essential oil and specific essential oil constituents like thymohydroquinone and carvacrol can inhibit acetylcholinesterase (AChE) (78155). However, this effect has not been observed in humans.
|
Theoretically, thyme might competitively inhibit the effects of estrogen replacement therapy.
In vitro research shows that thyme has estrogen receptor-binding activity and phytoestrogen content (3701). However, this effect has not been observed in humans.
|
Theoretically, taking high doses of vitamin A in combination with other potentially hepatotoxic drugs might increase the risk of liver disease.
|
Concomitant use of retinoids with vitamin A supplements might produce supratherapeutic vitamin A levels.
Retinoids, which are vitamin A derivatives, could have additive toxic effects when taken with vitamin A supplements (3046).
|
Theoretically, taking tetracycline antibiotics with high doses of vitamin A can increase the risk of pseudotumor cerebri.
Benign intracranial hypertension (pseudotumor cerebri) can occur with tetracyclines and with acute or chronic vitamin A toxicity. Case reports suggest that taking tetracyclines and vitamin A concurrently can increase the risk of this condition (10545,10546,10547). Avoid high doses of vitamin A in people taking tetracyclines chronically.
|
Theoretically, high doses of vitamin A could increase the risk of bleeding with warfarin.
Vitamin A toxicity is associated with hemorrhage and hypoprothrombinemia, possibly due to vitamin K antagonism (505). Advise patients taking warfarin to avoid doses of vitamin A above the tolerable upper intake level of 10,000 IU/day for adults.
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
|
Zinc might reduce the levels and clinical effects of penicillamine.
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
|
Zinc modestly reduces levels of ritonavir.
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product Phytostan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, caprylic acid seems to be well tolerated, short-term.
Most Common Adverse Effects:
Orally: Mild abdominal discomfort and change in taste perception.
Topically: Skin irritation.
Dermatologic ...Topically, caprylic acid is irritating to the skin of some people (20277,25076). Orally, a single dose of caprylic acid was associated with the development of a rash under the dressing of an inserted catheter in one patient in a clinical study (97662).
Gastrointestinal ...Orally, caprylic acid may cause mild abdominal discomfort and a change in taste perception (97662).
Neurologic/CNS ...Orally, caprylic acid has rarely been reported to cause mild dizziness, headache, and fatigue (97662).
General
...Orally and intravenously, glutamine is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, constipation, cough, diarrhea, flatulence, gastrointestinal pain, headache, musculoskeletal pain, nausea, and vomiting.
Endocrine ...One case of hot flashes has been reported in a patient taking glutamine 5-15 grams orally twice daily for up to 1 year (96520).
Gastrointestinal ...Orally, glutamine has been associated with belching, bloating, constipation, flatulence, nausea, vomiting, diarrhea, and gastrointestinal (GI) pain. Nausea, vomiting, constipation, diarrhea, and GI pain have been reported in clinical trials using high-dose glutamine 10-30 grams (0.3 grams/kg) in two divided doses daily to treat sickle cell disease (99414). One case of dyspepsia and one case of abdominal pain have been reported in patients taking glutamine 5-15 grams twice daily orally for up to 1 year (96520). In a small trial of healthy males, taking a single dose of about 60 grams (0.9 grams/kg of fat free body mass [FFM]) was associated with a 50% to 79% incidence of GI discomfort, nausea, and belching, compared with a 7% to 28% incidence with a lower dose of about 20 grams (0.3 gram/kg FFM). Flatulence, bloating, lower GI pain, and urge to regurgitate occurred at similar rates regardless of dose, and there were no cases of heartburn, vomiting, or diarrhea/constipation (105013). It is possible that certain GI side effects occur only after multiple doses of glutamine.
Musculoskeletal ...Orally, glutamine 30 grams daily has been associated with cases of musculoskeletal pain and non-cardiac chest pain in clinical trials for patients with sickle cell disease (99414).
Neurologic/CNS ...Orally, glutamine has been associated with dizziness and headache. A single case of dizziness has been reported in a patient treated with oral glutamine 0.5 grams/kg. However, the symptom resolved after reducing the dose to 0.25 grams/kg (91356). Mania and hypomania have been reported in 2 patients with bipolar disorder taking commercially purchased glutamine up to 4 grams daily (7291). Glutamine is metabolized to glutamate and ammonia, both of which might have neurological effects in people with neurological and psychiatric diseases or in people predisposed to hepatic encephalopathy (7293).
Oncologic ...There is some concern that glutamine might be used by rapidly growing tumors and possibly stimulate tumor growth. Although tumors may utilize glutamine and other amino acids, preliminary research shows that glutamine supplementation does not increase tumor growth (5469,7233,7738). In fact, there is preliminary evidence that glutamine might actually reduce tumor growth (5469).
Other ...Orally, glutamine has been associated with cough when a powdered formulation is used. It is unclear if this was due to accidental inhalation. One case of a burning sensation and one case of hypersplenism has been reported in a patient taking glutamine 5-15 grams twice daily orally for up to 1 year (96520).
General
...Orally, grapefruit and grapefruit juice are generally well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions in sensitive individuals have been reported. When large quantities are consumed, arrhythmias, mineralocorticoid excess, QT prolongation, and pseudohyperaldosteronism have been reported. There is also some concern for increased breast cancer risk with grapefruit consumption.
Cardiovascular ...Orally, consumption of pink grapefruit juice 1000 mL can cause QT prolongation and cause arrhythmias in healthy patients and worsen arrhythmias in cardiomyopathy patients (13031,91424).
Endocrine ...Orally, high doses of grapefruit juice have been observed to cause pseudohyperaldosteronism and mineralocorticoid excess (53340,53346).
Gastrointestinal ...In a case report, grapefruit juice held against the teeth resulted in enamel and tooth surface loss (53368).
Immunologic ...Orally, grapefruit can cause allergic sensitization characterized by eosinophilic gastroenteritis, urticaria, and generalized pruritus (53351,53360).
Oncologic ...Preliminary population research shows that postmenopausal adults who consume a quarter or more of a whole grapefruit daily have a 25% to 30% increased risk of developing breast cancer (14858). Grapefruit is a potent inhibitor of cytochrome P450 3A4, which metabolizes estrogen. Consuming large amounts of grapefruit might significantly increase endogenous estrogen levels and therefore increase the risk of breast cancer. More evidence is needed to validate these findings. Until more is known, advise patients to consume grapefruit in moderation.
Renal ...In population research, consumption of 240 mL/day of grapefruit juice is associated with an increased risk of kidney stones (4216,53372).
General
...Orally, MCTs can cause significant gastrointestinal upset, especially with higher doses.
Most Common Adverse Effects:
Abdominal discomfort, diarrhea, essential fatty acid deficiency, intestinal gas noises, irritability, nausea, reflux, vomiting. Gastrointestinal disturbances are thought to be associated with higher doses of MCT. Since MCTs are fats, excessive consumption can result in weight gain.
Cardiovascular ...There is some concern that MCTs may further increase the risk for hypertriglyceridemia in some preterm infants due to immature lipoprotein lipase activity in these infants. A case of extremely elevated triglyceride levels of 4,736 mg/dL and associated lipemia retinalis has been reported at 43 weeks post-menstrual age (PMA) for a preterm infant born at 30 weeks' gestational age. It was discovered that the baby had been receiving MCT supplements in addition to breast milk starting at 42 weeks' PMA. MCT supplements were discontinued. One month later triglycerides were reduced to 287 mg/dL, and the retinal vasculature had a normal hue. However, at 2-month follow-up, triglyceride levels were elevated to levels higher than normal for age despite MCT discontinuation. Investigators speculated that a genetic disorder of lipid metabolism may also have contributed to the elevated triglyceride levels in addition to use of MCTs (96330).
Gastrointestinal ...Orally, MCTs can cause significant gastrointestinal upset. Diarrhea is the most commonly reported side effect (11723,93737,93738,101967). Other reported side effects include vomiting, irritability, nausea, reflux, abdominal discomfort, intestinal gas noises, and essential fatty acid deficiency (11723,93738,101967). Taking MCTs with food can reduce these adverse effects (93737). Gastrointestinal disturbances are thought to be associated with higher doses of MCT, such as 85 grams (93731).
Other ...Excessive consumption of MCTs can result in weight gain. MCT oil contains 6-8.5 calories per gram. One tablespoon provides about 14 grams and about 115 calories (11724).
General ...A thorough evaluation of safety outcomes with pau d'arco has not been conducted. However, taking the lapachol constituent of pau d'arco in doses above 1.5 grams daily is regarded as unsafe.
Gastrointestinal ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause severe nausea, vomiting, and diarrhea (91939).
Hematologic ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause anemia and increased risk of bleeding (91939).
Immunologic ...Occupational exposure to sawdust from the pau d'arco tree and related species may cause asthma and dermatitis. The fresh sawdust can produce erythema and papules which progress to a severe weeping and crusting dermatitis (92184).
Neurologic/CNS ...Orally, the lapachol constituent of pau d'arco, taken in doses above 1. 5 grams daily, may cause dizziness (91939).
General ...Orally, rosemary seems to be well tolerated when used in appropriate medicinal amounts. Undiluted rosemary oil or very large quantities of rosemary leaf should not be consumed. Topically and as aromatherapy, rosemary seems to be well tolerated.
Dermatologic ...Topically, rosemary use can lead to photosensitivity, erythema, dermatitis, and cheilitis in hypersensitive individuals (4,6).
Immunologic
...Topically, allergic reactions can occur.
When used in the mouth, lip and gum edema have occurred (101173). When used on the skin, allergic contact dermatitis has occurred, likely due to the constituent carnosol (71715,71924,71926).
Rosemary might also cause occupational asthma. A case of occupational asthma caused by several aromatic herbs including thyme, rosemary, bay leaf, and garlic has been reported. The diagnosis was confirmed by inhalation challenges. Although all of the herbs caused immediate skin reactivity, a radioallergosorbent test (RAST) showed that garlic was the most potent allergen by weight, with rosemary and the other herbs showing less reactivity (783).
Neurologic/CNS ...Orally, the undiluted oil, as well as the camphor constituent of rosemary, might cause seizures (4,5,6,12868).
General
...Orally, thyme is well tolerated when used in food and seems to be well tolerated when used medicinally.
Topically, thyme seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Allergic reactions, diarrhea, dizziness, headache, heartburn, nausea, or vomiting.
Topically: Contact dermatitis and skin irritation.
Dermatologic ...Topically, thyme, thyme oil, or the constituent thymol can cause contact dermatitis and skin irritation (13463,78252,78362,78384,77982,78154,78310,78313,78384). In one study of 100 patients with contact allergies, 5% were attributed to thyme oil as an allergen contained in wound dressings (78362). Toothpastes containing thymol have been associated with cheilitis and glossitis (13463).
Gastrointestinal
...Orally, thyme and thyme oil may cause heartburn, nausea, vomiting, stomach upset, or diarrhea (13557,94033).
In a clinical study, two patients using extracts of thyme herb and ivy leaves experienced temporary stomach ache and mild nausea (78181).
Intravaginally, cream containing thyme and garlic has been associated with reports of nausea and vomiting in one clinical study (88387). It is not clear if these adverse effects were associated with thyme, garlic, or the combination.
Genitourinary ...Intravaginally, cream containing thyme and garlic has been associated with reports of vaginal dryness and vaginal irritation in one clinical study (88387). It is not clear if these adverse effects were associated with thyme, garlic, or the combination.
Immunologic ...Orally, thyme can cause allergic reactions; however, this is uncommon (13463). Allergic reactions to thyme might be more common in people who are also allergic to oregano and other Lamiaceae species (3808).
Neurologic/CNS ...Orally, thyme may case headache or dizziness (94033).
Pulmonary/Respiratory ...By inhalation, occupational exposure to thyme dust can cause acute airway obstruction (783,13463,13464,77982,78098).
General
...Orally, vitamin A is generally well-tolerated at doses below the tolerable upper intake level (UL).
Serious Adverse Effects (Rare):
Orally: In very high doses, vitamin A can cause pseudotumor cerebri, pain, liver toxicity, coma, and even death.
Dermatologic ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity including dry skin and lips; cracking, scaling, and itchy skin; skin redness and rash; hyperpigmentation; shiny skin, and massive skin peeling (7135,95051). Hypervitaminosis A can cause brittle nails, cheilitis, gingivitis, and hair loss (15,95051). Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause skin redness and generalized peeling of the skin a few days later and may last for several weeks (15).
Gastrointestinal ...There is some evidence that oral vitamin A supplementation might increase the risk of diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with diarrhea in well-nourished children (319). Diarrhea (82326,82389), nausea (7135,100329), abdominal pain (95051), abdominal fullness (100329), and vomiting (7135,82559,95051,109755) have been reported following use of large doses of oral vitamin A. Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause vomiting and diarrhea (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including anorexia, abdominal discomfort, and nausea and vomiting (7135).
Genitourinary ...Hypervitaminosis A can cause reduced menstrual flow (15). Intravaginally, all-trans retinoic acid can cause vaginal discharge, itching, irritation, and burning (9199).
Hematologic ...Hypervitaminosis A can cause spider angiomas, anemia, leukopenia, leukocytosis, and thrombocytopenia (15,95051).
Hepatic ...Since the liver is the main storage site for vitamin A, hypervitaminosis A can cause hepatotoxicity, with elevated liver enzymes such as alanine aminotransferase (ALT, formerly SGPT) and aspartate aminotransferase (AST, formerly SGOT), as well as fibrosis, cirrhosis, hepatomegaly, portal hypertension, and death (6377,7135,95051).
Musculoskeletal
...Vitamin A can increase the risk for osteoporosis and fractures.
Observational research has found that chronic, high intake of vitamin A 10,000 IU or more per day is associated with an increased risk of osteoporosis and hip fracture in postmenopausal adults, as well as overall risk of fracture in middle-aged males (7712,7713,9190). A meta-analysis of these and other large observational studies shows that high dietary intake of vitamin A or retinol is associated with a 23% to 29% greater risk of hip fracture when compared with low dietary intake (107294). High serum levels of vitamin A as retinol also increase the risk of fracture in males. Males with high serum retinol levels are seven times more likely to fracture a hip than those with lower serum retinol levels (9190). Vitamin A damage to bone can occur subclinically, without signs or symptoms of hypervitaminosis A. Some researchers are concerned that consumption of vitamin A fortified foods such as margarine and low-fat dairy products in addition to vitamin A or multivitamin supplements might cause excessive serum retinol levels. Older people have higher levels of vitamin A and might be at increased risk for vitamin A-induced osteoporosis.
Vitamin A's effects on bone resorption could lead to hypercalcemia (95051).
Hypervitaminosis can cause slow growth, premature epiphyseal closure, painful hyperostosis of the long bones, general joint pain, osteosclerosis, muscle pain, and calcium loss from the bones (15,95051). One child experienced severe bone pain after taking vitamin A 600,000 IU daily for more than 3 months (95051). Vitamin A was discontinued and symptoms lessened over a period of 2 weeks. The patient made a full recovery 2 months later.
Neurologic/CNS
...Orally, adverse effects from a single large dose of vitamin A are more common in young children than adults (15).
Headache, increased cerebrospinal fluid pressure, vertigo, and blurred vision have been reported following an acute oral dose of vitamin A 500,000 IU (7135). In children, approximately 25,000 IU/kg can cause headache, irritability, drowsiness, dizziness, delirium, and coma (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including fatigue, malaise, lethargy, and irritability (7135).
There are reports of bulging of the anterior fontanelle associated with an acute high oral dose of vitamin A in infants (7135,90784,95053,95054). In children, approximately 25,000 IU/kg can cause increased intracranial pressure with bulging fontanelles in infants (15). Also, muscular incoordination has been reported following short-term high doses of vitamin A (7135).
A case of intracranial hypertension involving diffuse headaches and brief loss of vision has been reported secondary to topical use of vitamin A. The patient was using over-the-counter vitamin A preparations twice daily including Avotin 0.05% cream, Retin-A gel 0.01%, and Isotrexin gel containing isotretinoin 0.05% and erythromycin 2%, for treatment of facial acne. Upon exam, the patient was noted to have bilateral optic disc edema. The patient discontinued use of topical vitamin A products. Two months later, the patient reported decreased headaches and an improvement in bilateral optic disc edema was seen (95056).
Ocular/Otic ...In children, oral vitamin A approximately 25,000 IU/kg can cause swelling of the optic disk, bulging eyeballs, and visual disturbances (15). Adverse effects from a single ingestion of a large dose of vitamin A are more common in young children than adults (15).
Oncologic ...There is concern that high intake of vitamin A might increase some forms of cancer. Population research suggests high vitamin A intake might increase the risk of gastric carcinoma (9194).
Psychiatric ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity, which can include symptoms that mimic severe depression or schizophrenic disorder (7135).
Pulmonary/Respiratory ...There is some evidence that oral vitamin A supplementation might increase the risk of pneumonia and diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with pneumonia and diarrhea in well-nourished children (319). In preschool children, high-dose vitamin A also increases the risk of respiratory infection (82288).
Other ...Chronic use of large amounts of vitamin A (>25,000 IU daily for more than 6 years or 100,000 IU daily for more than 6 months) can cause symptoms of vitamin A toxicity including mild fever and excessive sweating (7135). High intakes of vitamin A may result in a failure to gain weight normally in children and weight loss in adults (15).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).