Cassia angustifolia • Lemon peel • Licorice root • Uva Ursi • Alfalfa • Natural Lemon Flavor.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Dieter's Tea Cleanse & Trim Lemon Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Dieter's Tea Cleanse & Trim Lemon Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when the leaves are used orally and appropriately, short-term (4,6,12).
LIKELY UNSAFE ...when large amounts are used long-term. Chronic ingestion of alfalfa has been associated with drug-induced lupus effects (381,14828,30602).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Alfalfa contains constituents with possible estrogenic activity (4,11,30592).
LIKELY SAFE ...when used in amounts commonly found in foods. Lemon has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when inhaled in amounts used for aromatherapy, short-term. Lemon essential oil has been used with apparent safety as aromatherapy for up to 2 weeks in clinical research (93475,98128,98129). There is insufficient reliable information available about the safety of lemon when used topically, or when used orally or intranasally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Avoid using in amounts greater than those typically found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Senna is an FDA-approved nonprescription drug (8424,15429,15431,15442,40086,40088,74535,74545,74548,74562)(74567,74570,74583,74585,74586,74587,74593,74603,74606,74607)(74609,74613,74615,74624,74636,74639,74644,74650,74653,92711)(92712).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095).
CHILDREN: LIKELY SAFE
when used orally and appropriately, short-term.
Senna is an FDA-approved nonprescription drug for use in children 2 years and older. (15429,15434,15435).
CHILDREN: POSSIBLY UNSAFE
when used orally long-term or in high doses.
Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095,105956).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term (15429,24480).
POSSIBLY UNSAFE...when used orally long-term or in high doses. Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095).
LACTATION: POSSIBLY SAFE
when used orally and appropriately, short term.
Although small amounts of constituents of senna cross into breast milk, senna has been taken while breast-feeding with apparent safety. Senna does not cause changes in the frequency or consistency of infants' stools. (6026,15429,15436,15437,24482,24484,24485,24486,24487,74545).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Uva ursi has been used with apparent safety in doses of up to 3600 mg daily for 3-5 days (101815).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. There is concern about the safety of long-term or high-dose use because of the hydroquinone content of uva ursi. Hydroquinone is thought to have mutagenic and carcinogenic effects (7). At high doses (around 20 grams of dried herb) it can cause convulsions, cyanosis, delirium, shortness of breath, and collapse. At very high doses (30 grams of dried herb or more) it can be fatal (4).
CHILDREN: POSSIBLY UNSAFE
when used orally by children.
Uva ursi contains hydroquinone and high tannin levels, which can cause severe liver problems in children (4,18); avoid using.
PREGNANCY: LIKELY UNSAFE
when used orally.
Uva ursi can have oxytocic effects, increasing the speed of labor (4,7,19); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Dieter's Tea Cleanse & Trim Lemon Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, alfalfa might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, alfalfa might interfere with the activity of contraceptive drugs.
|
Theoretically, alfalfa might interfere with hormone therapy.
|
Theoretically, alfalfa might decrease the efficacy of immunosuppressive therapy.
|
Theoretically, concomitant use of alfalfa with photosensitizing drugs might have additive effects.
Animal research suggests that excessive doses of alfalfa may increase photosensitivity, possibly due to its chlorophyll content (106043). It is unclear if this effect would be clinically relevant in humans.
|
Theoretically, alfalfa might reduce the anticoagulant activity of warfarin.
|
Theoretically, taking itraconazole capsules or tablets with a beverage containing lemon might increase the levels and clinical effects of itraconazole.
In one case report, dissolving itraconazole tablets in a small amount of specific beverages containing lemon prior to administration increased the level of itraconazole in a lung transplant patient. In this case, the increased bioavailability was desirable and was likely due to improved tablet dissolution in the acidic beverage (110781).
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
|
Theoretically, licorice might reduce the effects of cisplatin.
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that licorice induces CYP1A2 enzymes (111404).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Theoretically, senna might increase the risk of adverse effects when taken with digoxin.
Overuse/abuse of senna increases the risk of adverse effects from cardiac glycosides, such as digoxin, due to potassium depletion (15425).
|
Theoretically, senna might increase the risk of hypokalemia when taken with diuretic drugs.
Overuse of senna might compound diuretic-induced potassium loss and increase the risk for hypokalemia (15425).
|
Theoretically, taking senna may interfere with the absorption of exogenous estrogens.
|
Theoretically, senna might increase the risk for fluid and electrolyte loss when taken with other stimulant laxatives.
|
Theoretically, excessive use of senna might increase the effects of warfarin.
Senna has stimulant laxative effects and can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. In one case report, excessive use of senna for 3 weeks resulted in diarrhea, bloody stools, and an elevated INR of 11.9 (16530).
|
Theoretically, uva ursi may decrease the metabolism of CYP2C19 substrates.
In vitro, uva ursi appears to inhibit cytochrome CYP2C19 (98550). This effect has not been reported in humans.
|
Theoretically, uva ursi may decrease the metabolism of CYP3A4 substrates.
In vitro, uva ursi appears to inhibit CYP3A4 (98550). This effect has not been reported in humans.
|
Theoretically, uva ursi may increase levels of drugs metabolized by glucuronidation.
In vitro, uva ursi extract appears to strongly inhibit UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1). However, uva ursi extract does not appear to inhibit UGT1A1 in animal models (98549). This effect has not been reported in humans.
|
Theoretically, uva ursi may increase lithium levels, necessitating a decrease in dose.
Uva ursi may have diuretic properties (81637). Diuretics may increase lithium reabsorption with sodium in the proximal tubule of the kidney. Theoretically, uva ursi might reduce excretion and increase levels of lithium.
|
Theoretically, uva ursi may alter the levels of drugs transported by P-glycoprotein.
In vitro, uva ursi appears to inhibit the multi-drug transporter protein, P-glycoprotein (98550). This effect has not been reported in humans.
|
Effects of uva ursi in the urinary tract may be reduced by urinary acidifying agents.
Uva ursi seems to work best in alkaline urine. Theoretically, taking uva ursi with medications known to acidify the urine may decrease any effects of uva ursi on the urinary tract (19).
|
Below is general information about the adverse effects of the known ingredients contained in the product Dieter's Tea Cleanse & Trim Lemon Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, alfalfa leaf seems to be well tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Abdominal discomfort, diarrhea, and flatulence.
Serious Adverse Effects (Rare):
Orally: Lupus-like syndrome after chronic ingestion of alfalfa.
Dermatologic ...Dermatitis associated with alfalfa use has been reported. In a 1954 publication, dermatitis was noted in a 61-year-old female consuming 4-6 cups of tea made with two tablespoonfuls of alfalfa seeds for approximately two months prior to onset. Examination revealed diffuse, confluent edema and erythema on the face, eyelids, ears, hands, forearms, and distal humeral regions. The dermatitis improved with treatment; re-exposure to alfalfa resulted in a similar reaction (30609).
Endocrine
...Alfalfa contains constituents, including coumestrol, with reported estrogenic activity (30586,30592,4753).
Effects in humans are not known.
One case report documents hypokalemia in a female who had been drinking a "cleansing tea" containing alfalfa, licorice, and stinging nettle. The potassium level returned to normal after discontinuing the tea and initiating potassium supplementation. The specific cause of the hypokalemia is not clear. Notably, both stinging nettle and licorice have been associated with hypokalemia and may have been responsible for this effect (30562).
Gastrointestinal ...Orally, flatulence and bulkier feces were reported during the first week of a case series of three subjects ingesting alfalfa (30598). In a case series of 15 patients ingesting alfalfa, increased fecal volume and increased stool frequency was reported. Additional adverse effects included abdominal discomfort in two patients, diarrhea in two patients, loose stools in six patients, and intestinal gas in 13 patients (5816).
Hematologic ...Pancytopenia and splenomegaly were reported in a 59-year-old male who had been taking 80-160 grams of ground alfalfa seeds for up to six weeks at a time, for a five month period. Hematologic values and spleen size returned to normal when alfalfa was discontinued (381).
Other
...Alfalfa products, including sprouts, seeds, and tablets, have been found to be contaminated with Escherichia coli, Salmonella, and Listeria monocytogenes, which have caused documented infections (5600,30566,30568,30572,30569,30564,30604,30610,30563,30607) (30566,30564,30604,30610,30563,30607,30576).
Orally, alfalfa has been associated with the development of a lupus-like syndrome in animals and humans (30594,14828,14830,30602), as well as with possible exacerbations of lupus in patients with known systemic lupus erythematosus (SLE). These reactions may be associated with the amino acid L-canavanine (30594), which appears to be present in alfalfa seeds and sprouts, but not leaves, and therefore should not be present in alfalfa tablets manufactured from the leaves (30601). However, case reports have included individuals ingesting tablets. A lupus-like syndrome was described in four patients taking 12-24 alfalfa tablets per day. Symptoms included arthralgias, myalgias, and rash; positive antinuclear antibodies (ANA) arose anywhere from three weeks to seven months after initiating alfalfa therapy. Upon discontinuation of alfalfa tablets, all four patients became asymptomatic. In two patients, ANA levels normalized (14828). Two additional reports have documented possible exacerbation or induction of SLE associated with alfalfa use. One case involved a female with a 26-year history of SLE, who had been taking 15 tablets of alfalfa daily for nine months prior to an exacerbation. Because of the delay in onset of the exacerbation from the initiation of alfalfa therapy, causation cannot be clearly established (30575). In a different report, SLE and arthritis were found in multiple family members who had been taking a combination of vitamin E and alfalfa tablets for seven years (30602). It is not known what other environmental or genetic factors may have affected these individuals, and the association with alfalfa is unclear.
General
...Orally, lemon is well tolerated in amounts commonly found in foods.
A thorough evaluation of safety outcomes has not been conducted on the use of larger amounts.
Most Common Adverse Effects:
Orally: Epigastralgia and heartburn with the regular consumption of fresh lemon juice.
Dermatologic ...Topically, the application of lemon oil might cause photosensitivity, due to furocoumarin derivative content. This occurs most often in fair-skinned people (11019).
Gastrointestinal ...Orally, fresh lemon juice, taken as 60 mL twice daily, has been reported to cause gastrointestinal disturbances in 37% of patients in one clinical trial, compared with 8% of patients in the placebo group. Specifically, of the patients consuming lemon juice, 21% experienced heartburn and 8% experienced epigastralgia, compared to 1% and 3%, respectively, in the placebo group (107489).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General
...Orally, senna is generally well-tolerated when used short-term in appropriate doses.
Most Common Adverse Effects:
Orally: Abdominal pain and discomfort, cramps, diarrhea, flatulence, nausea, fecal urgency, and urine discoloration.
Serious Adverse Effects (Rare):
Orally: Skin eruptions.
Cardiovascular ...Excessive use can cause potassium depletion and other electrolyte abnormalities (15425). In theory, this could cause potentially dangerous changes in heart rhythm. A small decrease in heart rate was seen in one clinical study (74587).
Dermatologic ...In adults, there are rare case reports of skin eruptions associated with senna, including erythema multiforme, fixed drug eruption, lichenoid reaction, toxic epidermal necrolysis, urticaria, photosensitivity, and contact dermatitis (96558). Infants and young children given senna products have experienced contact reactions on the buttocks due to prolonged exposure to stool while wearing a diaper overnight. These reactions range from erythema with small blisters, to large fluid-filled blisters with skin sloughing, as occurs with second degree burns (96559). In a case series of children treated with senna for chronic constipation, burn-like reactions occurred in 2.2%, typically with higher doses (mean 60 mg/day, range 35.2 to 150 mg/day) (96558,96559). These reactions can be avoided by giving senna early in the day, so that bowel movements occur at a time when diapers can be changed quickly (96559).
Gastrointestinal ...Orally, senna can cause abdominal pain and discomfort, cramps, bloating, flatulence, nausea, fecal urgency, and diarrhea (15427,15434,15435,15436,15439,15440,15441,105955). Chronic use has also been associated with "cathartic colon," radiographically diagnosed anatomical changes to the colon such as benign narrowing, colonic dilation, and loss of colonic folds (15428). The clinical relevance of these findings is unclear. Chronic use can also cause pseudomelanosis coli (pigment spots in intestinal mucosa) which is harmless, usually reverses with discontinuation, and is not associated with an increased risk of developing colorectal adenoma or carcinoma (6138). The cathartic properties of senna leaf are greater than the fruit (15430). Thus, the American Herbal Products Association only warns against long-term use of senna leaf (12).
Hepatic ...Chronic liver damage, portal vein thrombosis, and hepatitis have been reported following oral use of senna alkaloids, such as in tea made from senna leaves (13057,13095,41431,74560,74564,74584,105956). There is a case report of hepatitis in a female who consumed moderate amounts of senna tea. The patient was a poor metabolizer of cytochrome P450 2D6 (CYP2D6). It's thought that moderate doses of senna in this patient led to toxic hepatitis due to the patient's reduced ability to metabolize and eliminate the rhein anthrone metabolites of senna, which are thought to cause systemic toxicity (13057). There is also a case of liver failure, encephalopathy, and renal insufficiency in a female who consumed 1 liter/day of senna tea, prepared from 70 grams of dried senna fruit, over 3 years (13095). In another case report, a 3-year-old female presented with hepatitis that led to pancytopenia after drinking tea made from 2-3 grams dry senna leaves three times or more weekly for over one year (105956).
Immunologic ...In one case report, a 19-year-old male developed anaphylaxis with dyspnea, facial edema, and hives. This reaction was determined to be caused by the senna content in a specific combination product (Delgaxan Plus, Pompadour Ibérica) that the patient ingested (105957).
Musculoskeletal ...Hypertrophic osteoarthropathy, finger clubbing, cachexia, and tetany have been reported from excessive oral senna use in humans (15426,74580,74582,74620,74625).
Renal ...Nephrocalcinosis has been reported as a result of oral senna overuse (74582).
General
...Uva ursi is generally well tolerated in low doses, short-term.
Most Common Adverse Effects:
Orally: Diarrhea, nausea, stomach upset, and vomiting.
Serious Adverse Effects (Rare):
Orally: At high doses (20 grams of dried herb), uva ursi has been reported to cause collapse, convulsions, cyanosis, delirium, shortness of breath, and tinnitus. Very high doses of 30 grams or more may be fatal.
Gastrointestinal ...Orally, uva ursi may cause nausea, vomiting, diarrhea, and stomach upset (92148). It can also irritate the gastrointestinal tract (19).
Genitourinary ...Orally, uva ursi may cause the urine to be greenish-brown. It may also cause irritation and inflammation of the urinary tract mucous membranes (18).
Hepatic ...Uva ursi may be hepatotoxic. Theoretically, chronic use, especially in children, can cause liver impairment due its hydroquinone and high tannin content (4,18).
Neurologic/CNS ...Orally, around 20 grams of uva ursi is reported to supply up to one gram of hydroquinone, which can theoretically cause convulsions and delirium (4).
Ocular/Otic
...Orally, uva ursi may potentially cause retinal toxicity due to its hydroquinone content, which reduces melanin synthesis.
A 56-year-old female developed bilateral bull's-eye maculopathy, paracentral scotomas, and retinal thinning after 3 years of uva ursi tea ingestion (16900).
Taking around 20 grams of uva ursi orally is reported to supply up to one gram of hydroquinone, which can theoretically cause tinnitus (4).
Pulmonary/Respiratory ...Orally, around 20 grams of uva ursi is reported to supply up to one gram of hydroquinone, which can theoretically cause shortness of breath and cyanosis (4).