Ingredients | Amount Per Serving |
---|---|
Calories
|
5 Calorie(s) |
0.7 mg | |
(Schisandra chinensis )
|
1 Gram(s) |
Schisandra Whole Concentrate, Powder PlantPart: whole Genus: Schisandra
Below is general information about the effectiveness of the known ingredients contained in the product Organic Schizandra Fresh Berry Concentrate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Organic Schizandra Fresh Berry Concentrate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Schisandra extract up to 1 gram daily has been used for up to 12 weeks with apparent safety (12,96632,105562,105563,112887).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some evidence suggests schisandra fruit is a uterine stimulant (11).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product Organic Schizandra Fresh Berry Concentrate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, schisandra might increase the levels and clinical effects of cyclophosphamide.
Details
In vitro research shows that schisandra increases the concentration of cyclophosphamide, likely through inhibition of cytochrome P450 3A4. After multiple doses of the schisandra constituents schisandrin A and schisantherin A, the maximum concentration of cyclophosphamide was increased by 7% and 75%, respectively, while the overall exposure to cyclophosphamide was increased by 29% and 301%, respectively (109636).
|
Schisandra can increase the levels and clinical effects of cyclosporine.
Details
A small observational study in children with aplastic anemia found that taking schisandra with cyclosporine increased cyclosporine trough levels by 93% without increasing the risk of adverse events. However, the dose of cyclosporine was reduced in 9% of children to maintain appropriate cyclosporine blood concentrations (109637).
|
Theoretically, schisandra might increase the levels and clinical effects of CYP2C19 substrates.
Details
In vitro research shows that schisandra inhibits CYP2C19, and animal research shows that schisandra increases the concentration of voriconazole, a CYP2C19 substrate (105566). Theoretically, schisandra may also inhibit the metabolism of other CYP2C19 substrates. This effect has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of CYP2C9 substrates.
Details
In vitro and animal research suggests that schisandra induces CYP2C9 enzymes (14441). This effect has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of drugs metabolized by CYP3A4.
Details
Most clinical and laboratory research shows that schisandra, administered either as a single dose or up to twice daily for 14 days, inhibits CYP3A4 and increases the concentration of CYP3A4 substrates such as cyclophosphamide, midazolam, tacrolimus, and talinolol (13220,17414,23717,91386,91388,91387,96631,105564,109636,109638,109639,109640,109641). Although one in vitro and animal study shows that schisandra may induce CYP3A4 metabolism (14441), this effect appears to be overpowered by schisandra's CYP3A4 inhibitory activity and has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of midazolam.
Details
A small pharmacokinetic study in healthy adults shows that taking schisandra extract (Hezheng Pharmaceutical Co.) containing deoxyschizandrin 33.75 mg twice daily for 8 days and a single dose of midazolam 15 mg on day 8 increases the overall exposure to midazolam by about 119%, increases the peak plasma level of midazolam by 86%, and decreases midazolam clearance by about 52%. This effect has been attributed to inhibition of CYP3A4 by schisandra (91388).
|
Schisandra might increase the levels and clinical effects of P-glycoprotein substrates.
Details
In vitro research shows that schisandra extracts and constituents such as schisandrin B inhibit P-glycoprotein mediated efflux in intestinal cells and in P-glycoprotein over-expressing cell lines (17414,105643,105644). Additionally, a small clinical study shows that schisandra increases the peak concentration and overall exposure to talinolol, a P-glycoprotein probe substrate (91386). Theoretically, schisandra might inhibit the efflux of other P-glycoprotein substrates.
|
Schisandra can increase the levels and clinical effects of sirolimus.
Details
A small pharmacokinetic study in healthy volunteers shows that taking 3 capsules of schisandra (Hezheng Pharmaceutical Company) containing a total of 33.75 mg deoxyschizandrin twice daily for 13 days and then taking a single dose of sirolimus 2 mg increases the overall exposure and peak level of sirolimus by two-fold. This effect is thought to be due to inhibition of cytochrome P450 3A4 by schisandra, as well as possible inhibition of the P-glycoprotein drug transporter (105643).
|
Schisandra can increase the levels and clinical effects of tacrolimus.
Details
Clinical research in healthy children and adults, transplant patients, and patients with nephrotic syndrome and various rheumatic immunologic disorders shows that taking schisandra with tacrolimus increases tacrolimus peak levels by 183% to 268%, prolongs or delays time to peak tacrolimus concentrations, increases overall exposure to tacrolimus by 126% to 343%, and decreases tacrolimus clearance by 19% to 73% (17414,91387,15570,96631,105623,109638,109639,109640,109641,112889)(112890,112972,112973,112974). This effect is thought to be due to inhibition of P-glycoprotein drug transporter and CYP3A4 and CYP3A5 by schisandra (17414,96631,105623,105643,105644,112974). Some clinical and observational studies suggest that schisandra increases tacrolimus levels similarly in both expressors and non-expressors of CYP3A5, while other studies suggest it does so to a greater degree in CYP3A5 expressors than non-expressors (105623,109638,109639,109640,112889,112890,112973,112974). Animal research suggests that the greatest increase in tacrolimus levels occurs when schisandra is taken either concomitantly or up to 2 hours before tacrolimus (105564), and clinical and observational research in humans suggests that schisandra may increase whole blood levels of tacrolimus and decrease clearance of tacrolimus in a dose-dependent manner (109639,109640,112972).
|
Schisandra can increase the levels and clinical effects of talinolol.
Details
A small pharmacokinetic study in healthy volunteers shows that taking schisandra extract 300 mg twice daily for 14 days with a single dose of talinolol 100 mg on day 14 increases the peak talinolol level by 51% and the overall exposure to talinolol by 47%. This effect is thought to be due to the possible inhibition of cytochrome P450 3A4 and P-glycoprotein by schisandra (91386).
tly.
|
Theoretically, schisandra might increase the levels and clinical effects of voriconazole.
Details
Animal research shows that oral schisandra given daily for 1 or 14 days increases levels of intravenously administered voriconazole, a cytochrome P450 (CYP) 2C19 substrate. This effect is thought to be due to inhibition of CYP2C19 by schisandra (105566). However, this interaction has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of warfarin.
Details
Animal research suggests that oral schisandra extract, given daily for 6 days, reduces levels of intravenously administered warfarin. This effect might be due to the induction of cytochrome P450 (CYP) 2C9 metabolism by schisandra (14441). However, this interaction has not been reported in humans.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product Organic Schizandra Fresh Berry Concentrate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, schisandra seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Decreased appetite, heartburn, stomach upset, and urticaria.
Dermatologic ...Orally, schisandra can cause urticaria in some patients (11).
Gastrointestinal ...Orally, schisandra can cause heartburn, decreased appetite, and stomach upset (11).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).