Ingredients | Amount Per Serving |
---|---|
Calories
|
0 Calorie(s) |
Total Carbohydrate
|
0 Gram(s) |
Total Sugars
|
0 Gram(s) |
Added Sugars
|
0 Gram(s) |
(Na)
(Sodium Citrate)
|
50 mg |
(K)
(Potassium Chloride)
|
100 mg |
2:1:1 BCAA Matrix
|
7 Gram(s) |
3.5 Gram(s) | |
1.75 Gram(s) | |
1.75 Gram(s) | |
Full-Spectrum EAA Matrix
|
3 Gram(s) |
(LPA)
|
|
Natural & Artificial Flavors, Citric Acid, Malic Acid, Silicon Dioxide (Alt. Name: SiO2), Calcium Silicate (Alt. Name: Ca Silicate), Sucralose, FD&C Red #40, FD&C Yellow #6
Below is general information about the effectiveness of the known ingredients contained in the product HydroBCAA + Essentials Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product HydroBCAA + Essentials Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. BCAAs 12 grams daily have not been associated with significant adverse effects in studies lasting for up to 2 years (68,72,73,74,10117,10146,10147,37120,92643,97531,103351,103352). ...when used intravenously and appropriately. BCAAs are an FDA-approved injectable product (13309).
CHILDREN: LIKELY SAFE
when used orally in dietary amounts of 71-134 mg/kg daily (11120,13308).
CHILDREN: POSSIBLY SAFE
when larger, supplemental doses are used orally and appropriately for up to 6 months (13307,13308,37127).
PREGNANCY:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although adverse effects have not been reported in humans, some animal research suggests that consumption of supplemental isoleucine, a BCAA, during the first half of pregnancy may have variable effects on birth weight, possibly due to abnormal placental development (103350).
LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although the safety of increased BCAA consumption during lactation is unclear, some clinical research suggests that a higher concentration of isoleucine and leucine in breastmilk during the first 6 months postpartum is not associated with infant growth or body composition at 2 weeks, 2 months, or 6 months (108466).
LIKELY SAFE ...when used orally in the amounts found in foods.
POSSIBLY SAFE ...when used orally in larger amounts, short-term. L-histidine has been used with apparent safety in doses of up to 4 grams daily for up to 12 weeks (2347,2353,96311,108621), or in doses of up to 8 grams daily for up to 4 weeks (108620).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts found in foods.
There is insufficient reliable information available about the safety of histidine when used in larger amounts during pregnancy or lactation.
LIKELY SAFE ...when used orally in the amounts commonly found in foods. L-tryptophan is an essential amino acid that must be obtained from the diet. A typical diet in the United States supplies 0.5-2 grams of L-tryptophan daily (1146).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. L-tryptophan 5 grams daily for 21 days has been used with apparent safety (91460,97243). In 1989, L-tryptophan was linked to over 1500 reports of eosinophilia-myalgia syndrome (EMS) and several deaths (7067,8053,10085,11474,11478), leading to its removal from the U.S. market in 1990 (7067). The exact cause of EMS in patients taking L-tryptophan is unknown, but some evidence suggests that nearly all cases were due to contaminated L-tryptophan products from a single manufacturer (8050,8051,11477,11478). Under the Dietary Supplement Health and Education Act (DSHEA) of 1994, L-tryptophan is currently available and marketed as a dietary supplement. There is insufficient reliable information available about the safety of L-tryptophan when used orally, long-term.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods.
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts because it may cause respiratory depression in utero (1142).
Avoid using in amounts greater than those found in foods.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of larger medicinal amounts; avoid using.
POSSIBLY SAFE ...when used orally in doses up to 3000 mg daily for up to one year (1114,1119,1120,90642,104104), or up to 6000 mg daily for up to 8 weeks (90644,90645). ...when used topically and appropriately, short-term (11051).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in food (94500).
POSSIBLY SAFE ...when used orally or intravenously and appropriately in medicinal amounts under the supervision of a healthcare professional (2410,2411,2413).
POSSIBLY UNSAFE ...when used orally or intravenously in excessive doses. Doses larger than 100 mg/kg should be avoided to prevent severe and potentially lethal cerebral effects (9339).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (94500).
CHILDREN: POSSIBLY SAFE
when used intravenously and appropriately (9338).
CHILDREN: POSSIBLY UNSAFE
when used intravenously in infants receiving parenteral nutrition.
In infants, blood methionine concentration can increase due to lower enzyme activity and inability to metabolize methionine. High levels of methionine can cause liver toxicity (9338).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food (94500).
There is insufficient reliable information available about the safety of methionine in medical doses during pregnancy and lactation; avoid using.
LIKELY SAFE ...when L-phenylalanine is consumed in amounts typically found in foods (11120).
POSSIBLY SAFE ...when L-phenylalanine is used orally in doses up to 100 mg/kg daily for up to 3 months (2463,2464,2466,2467,2469). ...when D-phenylalanine is used orally in doses up to 1 gram daily for up to 4 weeks, or as a single dose of 4-10 grams (2455,2456,2459,68795,104792). ...when DL-phenylalanine is used orally in doses up to 200 mg daily for up to 4 weeks (2468,68795,68825). ...when phenylalanine cream is applied topically, short-term (2461,92704).
PREGNANCY: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with normal phenylalanine metabolism (2020,11120).
PREGNANCY: UNSAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with high serum phenylalanine concentrations, such as those with phenylketonuria (PKU).
Serum levels of phenylalanine greater than 360 micromol/L increase the risk of birth defects (1402,11468). Experts recommend that patients with high phenylalanine serum concentrations follow a low phenylalanine diet for at least 20 weeks prior to conception to decrease the risk for birth defects (1402).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in large doses during pregnancy; avoid using.
There is insufficient reliable information available about the safety of oral D-phenylalanine during pregnancy; avoid using.
LACTATION: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by breast-feeding patients with normal phenylalanine metabolism (2020,11120).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in medicinal amounts during lactation; avoid using. There is insufficient reliable information available about the safety of oral D-phenylalanine during lactation; avoid using.
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when used orally in food amounts. Threonine as L-threonine in doses of 7-14 mg/kg daily (about 0.5-1 gram daily) has been suggested to be the minimum amount required to maintain a positive nitrogen balance in humans and is generally considered to be safe (60072,94096).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Taking threonine in doses up to 4 grams daily for up to 12 months seems to be safe (681,12056,12057,12059,60069).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product HydroBCAA + Essentials Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, BCAAs might alter the effects of antidiabetes medications.
Details
|
BCAAs in large doses can reduce the effects of levodopa.
Details
BCAAs may compete with levodopa for transport systems in the intestine and brain and decrease the effectiveness of levodopa (66,2719). Small clinical studies how that concomitant ingestion of protein or high doses of leucine or isoleucine (100 mg/kg) and levodopa can exacerbate tremor, rigidity, and the "on-off" syndrome in patients with Parkinson disease (3291,3292,3293,3294).
|
Theoretically, concomitant use of L-tryptophan with CNS depressants might cause additive sedative effects.
Details
Clinical research shows that L-tryptophan can cause fatigue and drowsiness (1143).
|
Theoretically, combining L-tryptophan with serotonergic drugs might cause additive serotonergic effects.
Details
|
Theoretically, lysine may reduce the effects of 5-HT4 agonists.
Details
Animal research suggests that L-lysine is a partial serotonin receptor 4 (5-HT4) antagonist and inhibits diarrhea induced by the 5-HT4 agonist, 5-hydroxytryptophane (19400).
|
Concomitant intake of phenylalanine may reduce the intestinal absorption of baclofen.
Details
Phenylalanine and baclofen share the same intestinal carrier for absorption; phenylalanine competitively inhibits the absorption of baclofen, reducing its plasma levels (23788).
|
Phenylalanine, especially in high doses, can reduce the effectiveness of levodopa.
Details
|
Theoretically, concomitant use of L-phenylalanine and non-selective MAOIs might increase the risk of hypertensive crisis.
Details
L-phenylalanine is metabolized to tyrosine (2052,9949). Some evidence suggests that L-phenylalanine, given with the non-selective MAOI pargyline, might prevent the elimination of tyramine, increasing the risk of hypertensive crisis (2021). However, this was not reported in a small number of patients when using L-phenylalanine with the partially selective MAO-B inhibitor, selegiline (2469).
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
Details
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
Details
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Details
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, threonine might decrease the effects of NMDA antagonists.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product HydroBCAA + Essentials Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally or intravenously, BCAAs are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, diarrhea, nausea, vomiting.
All routes of administration: High doses can lead to fatigue and loss of motor coordination.
Cardiovascular ...Orally, a single case of hypertension following the use of BCAAs has been reported (37143).
Dermatologic ...Orally, a single case of skin blanching following the use of BCAAs has been reported (681). It is not known if this effect was due to use of BCAAs or other factors.
Gastrointestinal ...Orally, BCAAs can cause nausea, vomiting, diarrhea, and abdominal distension. Nausea and diarrhea has been reported to occur in about 10% of people taking BCAAs (10117,37143,92643,97531).
Neurologic/CNS ...Orally and intravenously, BCAAs can cause fatigue and loss of motor coordination due to increased plasma ammonia levels (693,694,10117). Short-term use of 60 grams of BCAAs containing leucine, isoleucine, and valine for 7 days in patients with normal metabolic function seems to increase levels of ammonia, but not to toxic plasma levels (10117). However, liver function should be monitored with high doses or long-term use (10117). Due to the potential of increased plasma levels of ammonia and subsequent fatigue and loss of motor coordination, BCAAs should be used cautiously before or during activities where performance depends on motor coordination (75). Orally, BCAAs may also cause headache, but this has only been reported in one clinical trial (681).
General ...Orally, histidine has been used with apparent safety in clinical research; however, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, L-tryptophan is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, diarrhea, drowsiness, dry mouth, flatulence, headache, heartburn, lightheadedness, nausea, stomach pain, visual blurring, and vomiting.
Serious Adverse Effects (Rare):
Orally: L-tryptophan has been associated with the neurological disorder eosinophilia-myalgia syndrome (EMS). However, almost all cases were traced to L-tryptophan produced by a single manufacturer in Japan and are likely related to contamination.
Cardiovascular ...Orally, L-tryptophan has been associated with eosinophilia-myalgia syndrome (EMS), which can include cardiovascular symptoms such as myocarditis, arrhythmias, and palpitations (8053,11477).
Dermatologic ...Orally, L-tryptophan has been associated with eosinophilia-myalgia syndrome (EMS), which can include dermatological symptoms such as sclerodermiform skin changes, alopecia, and rash (8053,11477).
Gastrointestinal ...Orally, L-tryptophan can cause gastrointestinal side effects such as heartburn, stomach pain, belching and flatulence, nausea, vomiting, diarrhea, dry mouth, and anorexia (10853,99884).
Hematologic ...Orally, L-tryptophan has been associated with eosinophilia-myalgia syndrome (EMS), which can include hematologic symptoms such as eosinophilia (8053,11477).
Hepatic ...Orally, L-tryptophan has been associated with eosinophilia-myalgia syndrome (EMS), which can include hepatic symptoms such as hepatomegaly (8053,11477).
Musculoskeletal ...Orally, L-tryptophan has been associated with eosinophilia-myalgia syndrome (EMS), which can include musculoskeletal symptoms such as myalgia and inflammation of the joints and connective tissue (8053,11477).
Neurologic/CNS
...Orally, L-tryptophan can cause headache, lightheadedness, and ataxia (10853,99884).
In 1989, more than 1500 cases of the neurological disorder EMS were associated with oral L-tryptophan use in the US. About 95% of all EMS cases were traced to contaminated L-tryptophan produced by a single manufacturer in Japan (8054,10288,10289,11475,11476). In 1990, L-tryptophan was recalled in the U.S. and an FDA alert was put into force limiting the importation of all over-the-counter L-tryptophan products (7067,11477,11478). After the limitation of L-tryptophan products, the incidence of EMS dropped abruptly (11474). Symptoms of EMS associated with L-tryptophan use include intense eosinophilia; fatigue; myalgia; neuropathy; sclerodermiform skin changes; alopecia; rash; and inflammatory disorders affecting the joints, connective tissue, lungs, heart, and liver (8053,11477). Symptoms tend to improve over time, however some individuals may still experience symptoms up to 2 years after the onset of EMS and complete resolution of symptoms may not occur (8053,10287).
There is some evidence of an association between L-tryptophan-related EMS and the occurrence of chronic B-cell lymphocytic leukemia (8055).
Ocular/Otic ...Orally, L-tryptophan can cause side effects such as visual blurring (10853).
Pulmonary/Respiratory ...Orally, L-tryptophan has been associated with eosinophilia-myalgia syndrome (EMS), which can include respiratory symptoms such as dyspnea and cough (8053,11477).
General
...Orally and topically, lysine is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, and dyspepsia.
Gastrointestinal ...Orally, lysine has been reported to cause diarrhea and abdominal pain, including dyspepsia (1114,1115,1116,1118,1120).
Renal ...There is one case report of oral lysine use associated with tubulointerstitial nephritis progressing to chronic renal failure in a 44-year old female (1121).
General
...Orally, methionine is well tolerated when used in amounts commonly found in foods.
Intravenously, methionine is generally well tolerated.
Most Common Adverse Effects:
All ROAs: Dizziness, drowsiness, hypotension, irritability, and vomiting. Methionine may also cause headache, increased homocysteine levels, increased urinary calcium excretion, and leukocytosis.
Serious Adverse Effects (Rare):
All ROAs: Cerebral edema, hepatic encephalopathy. In infants, intravenous methionine has been linked to liver toxicity.
Cardiovascular ...Orally or intravenously, methionine can cause hypotension (9339,9340). High-dose methionine (75-100 mg/kg daily) may increase plasma concentrations of homocysteine, which is a risk factor for vascular disease (63112,63114,63115). However, a study of patients with type 2 diabetes and a history of cardiovascular disease (CVD) showed that methionine loading did not increase homocysteine concentrations, and that a cause-effect relationship between increased intake of methionine and endothelial dysfunction has not been clearly established (63110).
Gastrointestinal ...Orally or intravenously, methionine can cause vomiting (9339,9340).
Genitourinary ...Orally or intravenously, methionine may increase urinary calcium excretion (9340,63112,94095).
Hematologic ...Orally or intravenously, methionine may cause leukocytosis when used at a dose of 8-13. 9 grams daily for 4-5 days (9340).
Hepatic ...A single dose of 8 grams of methionine has reportedly caused hepatic encephalopathy in patients with cirrhosis (9340). Long-term use of methionine-containing parenteral nutrition solution has been linked to liver toxicity in infants (9338).
Neurologic/CNS
...Orally or intravenously, methionine can cause dizziness, drowsiness, headache, and irritability (9339,9340,94095).
A case of cerebral edema ultimately leading to death has been reported in a patient receiving methionine 100 mg/kg orally. The post-load plasma concentrations of methionine were substantially higher in this patient than those previously reported in humans receiving this usual oral loading dose, leading the authors to postulate that an overdose of methionine may have been administered erroneously. This can occur when plasma methionine levels rise above 3000 mcmol/L (9339). Another case of progressive cerebral edema associated with high methionine levels and betaine (N,N,N-trimethylglycine) therapy in a patient with cystathionine beta-synthase (CBS) deficiency has been reported (63119). The authors stated that the cerebral edema was most likely precipitated by the betaine therapy, but that the exact mechanism is uncertain.
Oncologic ...Although one case-control study of incident, histologically-confirmed gastric cancer has indicated that a diet rich in methionine, salt, and nitrite is associated with an increased risk of gastric cancer (2409), a large observational study that adjusted for multiple factors, including sodium intake, has found no association between high dietary intake of methionine and gastric cancer (108041).
General
...Orally, L-phenylalanine and D-phenylalanine are generally well tolerated when used in typical doses.
Most Common Adverse Effects:
Orally: Anxiety, constipation, headache, heartburn, insomnia, nausea, and sedation.
Topically: Burning, erythema, and itching.
Cardiovascular ...One patient in a small case series developed extrasystoles after 10 days of treatment with DL-phenylalanine, but this resolved on the 12th day of treatment without discontinuing phenylalanine (68825).
Dermatologic ...Topically, erythema, itching, and burning have been reported in some patients using an undecylenoyl phenylalanine 2% cream for treatment of age spots (92704).
Gastrointestinal ...Orally, constipation, heartburn, and nausea has been reported in some patients taking phenylalanine (2463,68827,68829,68830).
Neurologic/CNS
...Orally, headaches, which are typically transient and do not require treatment or dosage reduction, have been reported during the first 10 days of treatment with L-, D-, and DL-phenylalanine (68795,68825,68827,68829).
Transient vertigo has also been reported with D- and DL-phenylalanine (68795).
In patients with Parkinson disease, taking DL-phenylalanine, especially in high doses, interferes with levodopa transport into the brain, causing increased rigidity, tremor, and occurrence of the on-off phenomenon. Akinesia has been reported more rarely (3291,3292,3293,3294,68828). In patients with schizophrenia, taking a single dose of L-phenylalanine 100 mg/kg has been associated with worsening of medication-induced tardive dyskinesia (2457).
Psychiatric ...Orally, L-phenylalanine has been associated with anxiety, insomnia, and, more rarely, hypomania (68827,68829). DL-phenylalanine has been associated with fatigue and sedation (9951).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General ...Orally, threonine seems to be well tolerated.
Dermatologic ...Orally, skin rash has been reported in people who have taken threonine (681).
Gastrointestinal ...Orally, some patients can experience minor gastrointestinal upset including diarrhea (12056). Other side effects reported in people who have taken threonine include flatus and constipation (681).
Neurologic/CNS ...Orally, headache has been reported in people who have taken threonine (681).
Pulmonary/Respiratory ...Orally, rhinorrhea has been reported in people who have taken threonine (681).
Other ...Orally, a two-fold increase in serum ammonia levels occurred in one patient following administration of threonine 4 grams daily (681).