Two capsules contain: Proprietary Blend 1040 mg: Taraxacum officinale root, Acacia Catechu bark extract, Catechu Azadirachta Indica bark extract, Smilax china root, Picrorhiza Kurroa root, Hemidesmus Indicus root, HOLARRBENA ANTIDYSENTERICA Holarrhena Antidysenterica bark, Rubia Cordifolia Root, Swertia chirata whole plant extract, Caesalpinia crista seed extract, Fumaria Parviflora whole plant, Fumaria Alstonia Scholaris bark extract, Tinospora cordifolia stem, Curcuma Longa rhizome, Phyllanthus emblica fruit, Terminalia belerica fruit, Terminalia Chebula fruit. Other Ingredients: Gelatin, Water.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Ayurvedic Skin Detox. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Ayurvedic Skin Detox. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Catechu has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of catechu when used orally in medicinal amounts. A specific product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of flavonoid extracts from catechu and Baikal skullcap, has been associated with an increased risk for liver and lung injury. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product (106042). It is unclear if these effects were due to catechu, Baikal skullcap, or the combination. There is insufficient reliable information available about the safety of catechu when used topically.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
Catechu has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of catechu when used orally in medicinal amounts or when used topically during pregnancy and lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Chirata has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912). There is insufficient reliable information available about the safety of chirata in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
There is insufficient reliable information available about the safety of divi-divi when used orally.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Fumitory extract 500 mg three times daily has been safely used in a study lasting up to 18 weeks (14415).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Fumitory contains the alkaloid protopine. Other Fumariaceae species that contain alkaloids including protopine can cause convulsions and death when large amounts are ingested (6).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using (4).
LIKELY SAFE ...when consumed in amounts commonly found in foods (6,2076).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Indian gooseberry fruit extract has been used safely in doses of up to 1000 mg daily for up to 6 months, 1500 mg daily for up to 8 weeks, or 2000 mg daily for up to 4 weeks (92515,99238,99240,99241,102855,102857,105352,105354,105356). Indian gooseberry leaf extract has been used with apparent safety at a dose of 750 mg daily for 10 days (99846). ...when used topically and appropriately. An emulsion containing Indian gooseberry extract 3% and other ingredients has been applied safely to the skin twice daily for up to 60 days (111571).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when neem bark extract is used orally and appropriately, short-term. Neem bark extract has been used safely in clinical research at doses up to 60 mg daily for up to 10 weeks (12822). ...when neem leaf and twig extract is used orally and appropriately, short-term. Neem leaf and twig extract has been used safely in clinical research at doses up to 500 mg twice daily for up to 12 weeks (104181). ...when neem leaf extract gel is used intraorally for up to 6 weeks (12824,64845,64850,94567). ...when neem oil, cream, or face wash is used topically on the skin for up to 2 weeks (64876,64878,64882,102867,107883).
POSSIBLY UNSAFE ...when neem or neem oil is used orally in large amounts or long-term. Preliminary clinical research suggests neem might be toxic to the kidneys or liver with high-dose or chronic use. Cardiac arrest has also been reported (12835,64870,64873).
CHILDREN: POSSIBLY SAFE
when neem extract is used topically.
It has been used with apparent safety as a shampoo, with one or two total applications (97928).
CHILDREN: LIKELY UNSAFE
when neem oil or seeds are used orally.
There are reports of infants who were severely poisoned and died after oral use of neem (3473,3474,3476,64855,64875).
PREGNANCY: LIKELY UNSAFE
when neem oil or leaf is used orally.
Neem oil and leaf have been used as abortifacients (12825,12835,64884,64889).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Picrorhiza seems to be safe when used for up to 1 year (11493,11848,11858).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Several small studies have used Terminalia arjuna powdered bark or bark extract with apparent safely in doses up to 2000 mg or 400 mg daily, respectively, for 2 weeks to 3 months (2502,2503,2504,111012,111093); however, patients should avoid self-treatment with this product due to potentially significant cardiovascular effects. Further study is needed to determine the safety of Terminalia arjuna for long-term use.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the stem extract is used orally and appropriately, short-term. Tinospora cordifolia aqueous stem extract has been used with apparent safety at a dose of 900 mg daily for up to 8 weeks (15085). Powdered stem extract has also been used with apparent safety at a dose of up to 3 grams daily for up to 2 weeks or a dose of 1500 mg daily for up to 26 weeks (92230,106846,111503). There is insufficient reliable information available about the safety of other parts of Tinospora cordifolia when used orally or when any part of the plant is used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283,114899) and products providing up to 1500 mg of curcumin daily have been safely used for up to 12 months (114898). Additionally, turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357,114906). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Ayurvedic Skin Detox. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, concomitant use with antihypertensive drugs might increase the risk of hypotension.
Catechu might lower blood pressure (14144).
|
Theoretically, black catechu may increase the levels and clinical effects of CYP1A2 substrates.
Animal research shows that black catechu can increase theophylline concentrations in the blood, possibly by inhibiting CYP1A2 (94560). Theophylline is a CYP1A2 substrate.
|
Theoretically, catechu might interfere with immunosuppressant therapy.
Animal and in vitro studies suggest that catechu has immunomodulating effects (103271).
|
Theoretically, black catechu may increase the levels and clinical effects of theophylline.
Animal research shows that black catechu can increase theophylline concentrations in the blood, possibly by inhibiting cytochrome P450 1A2 (94560).
|
Theoretically, taking chirata concomitantly with antidiabetes drugs may increase the risk of hypoglycemia.
In non-fasted animals pretreated with the hypoglycemic drug tolbutamide, taking chirata 250 mg/kg decreased blood glucose levels (41646). Monitor blood glucose levels closely.
|
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs; however, research is conflicting.
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking Indian gooseberry 500 mg along with clopidogrel 75 mg or ecosprin 75 mg, as a single dose or for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with clopidogrel 75 mg or ecosprin 75 mg alone (92514). Until more is known, use caution when taking Indian gooseberry in combination with anticoagulant/antiplatelet drugs.
|
Taking Indian gooseberry with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with aspirin; however, research is conflicting.
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking a single dose of Indian gooseberry 500 mg along with ecosprin 75 mg, or taking a combination of Indian gooseberry 500 mg twice daily plus ecosprin 75 mg once daily for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with ecosprin 75 mg alone (92514).
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with clopidogrel; however, research is conflicting.
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking a single dose of Indian gooseberry 500 mg along with clopidogrel 75 mg, or taking a combination of Indian gooseberry 500 mg twice daily plus clopidogrel 75 mg once daily for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with clopidogrel 75 mg alone (92514).
|
Neem might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP2C8 substrates.
In vitro research shows that neem leaf methanol extract inhibits CYP2C8 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP2C9 substrates.
In vitro research shows that neem leaf methanol extract inhibits CYP2C9 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that neem leaf methanol extract inhibits CYP3A4 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem might decrease the effectiveness of immunosuppressants.
Animal research suggests that neem might have immunostimulant effects (12825).
|
Theoretically, neem leaf extract might increase the levels and clinical effects of P-glycoprotein substrates.
In vitro research shows that neem leaf methanol extract inhibits renal P-glycoprotein transport activity (107850). So far, this reaction has not been reported in humans.
|
Evidence from animal research suggests that an extract of picrorhiza can reduce fasting and non-fasting blood sugar levels (57220). Theoretically, picrorhiza might have additive effects with antidiabetes drugs and increase the risk of hypoglycemia. Monitor blood glucose levels closely. Dose adjustments might be necessary. Some antidiabetes drugs include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Picrorhiza seems to have immunostimulating activity (11492,11853). Theoretically, picrorhiza may interfere with immunosuppressant therapy. Immunosuppressant drugs include azathioprine (Imuran), basiliximab (Simulect), cyclosporine (Neoral, Sandimmune), daclizumab (Zenapax), muromonab-CD3 (OKT3, Orthoclone OKT3), mycophenolate (CellCept), tacrolimus (FK506, Prograf), sirolimus (Rapamune), prednisone (Deltasone, Orasone), and other corticosteroids (glucocorticoids).
|
Theoretically, concomitant use of Terminalia arjuna with anticoagulant or antiplatelet drugs may increase the risk of bleeding in some patients.
In vitro, Terminalia arjuna bark extract inhibits platelet aggregation, decreases platelet activation, and shows antithrombotic properties (92831).
|
Theoretically, use of Terminalia arjuna may increase the levels and clinical effects of CYP2C9 substrates.
In vitro research shows that Terminalia arjuna extract inhibits CYP2C9 enzymes and reduces CYP2C9 substrate metabolism (96729).
|
Theoretically, use of Terminalia arjuna may increase the levels and clinical effects of CYP2D6 substrates.
In vitro research shows that Terminalia arjuna extract inhibits CYP2D6 enzymes and reduces CYP2D6 substrate metabolism (96729).
|
Theoretically, use of Terminalia arjuna may increase the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that Terminalia arjuna extract inhibits CYP3A4 enzymes and reduces CYP3A4 substrate metabolism (96729).
|
Theoretically, Tinospora cordifolia might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP1A2.
In vitro research shows that Tinospora cordifolia extract inhibits CYP1A2 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2C19.
In vitro research shows that Tinospora cordifolia extract inhibits CYP2C19 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2C9.
In vitro research shows that Tinospora cordifolia extract inhibits CYP2C9. Animal research shows that Tinospora cordifolia extract 400 mg/kg twice daily for 14 days reduces the clearance and increases plasma levels of glyburide, a CYP2C9 substrate (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2D6.
In vitro research shows that Tinospora cordifolia extract inhibits CYP2D6 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might reduce the effectiveness of immunosuppressants.
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Other clinical studies in patients with diabetes show that taking curcumin daily can reduce blood glucose levels when compared with placebo (104149,114898,114900).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
|
Theoretically, turmeric might increase the effects of losartan.
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Ayurvedic Skin Detox. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...There is limited reliable information available about the adverse effects of catechu when used orally or topically as a single ingredient. A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavonoid extracts of catechu and Baikal skullcap has been associated with serious adverse effects, including liver and lung injury.
Hepatic
...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of flavonoid extracts from catechu and Baikal skullcap, has been linked to several reports of acute liver damage.
In a case series, four reports of liver damage were described in patients taking this product. The patients involved were females aged 54-68 years taking doses of 250-500 mg twice daily for 1-3 months. Signs and symptoms included jaundice, pruritus, abdominal pain, fever, rash, and elevated serum and liver transaminase levels. All patients fully recovered and levels normalized within 3 months after discontinuation (18009,18011). In addition to these published case reports, approximately 30 liver-related adverse events have been reported to the manufacturer of this product (18009). The mechanism of hepatotoxicity is unclear (18009,18010); it is estimated that the incidence of hepatotoxicity with this product is around 1 in 10,000, although the actual incidence is unknown (18010). In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to catechu, Baikal skullcap, or the combination.
More recently, in another case report, a 54-year-old female reported to the emergency room with acute hepatitis possibly due to taking a preparation of catechu and Baikal skullcap for 2-4 weeks. Causation was unable to be established. After discontinuing the supplements and supportive treatment, liver function returned to normal (94563). It was unclear if the catechu product was the same specific combination product (Limbrel, Primus Pharmaceuticals) associated with previous reports of liver damage.
Pulmonary/Respiratory ...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of flavonoid extracts from catechu and Baikal skullcap, has been linked to several reports of hypersensitivity pneumonitis. Symptoms include fever, chills, headache, cough, chronic bronchitis, shortness of breath, weight loss, and fatigue. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to catechu, Baikal skullcap, or the combination.
General ...There is currently a limited amount of information on the adverse effects of chirata. A thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Orally, chirata has been reported to cause duodenal ulcers (18).
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General ...No adverse effects have been reported; however, a thorough evaluation of safety outcomes has not been conducted.
General ...Orally, fumitory seems to be well tolerated when consumed short-term in appropriate amounts (14415). There is some concern about using fumitory in large amounts. Orally, large quantities of alkaloids in other members of the fumitory family (Fumariaceae) have caused trembling, convulsions, and death (2).
Neurologic/CNS ...Large quantities of alkaloids in other members of the fumitory family (Fumariaceae) have caused trembling, convulsions, and death (2).
General ...Orally, Indian gooseberry seems to be well tolerated.
Dermatologic ...Orally, itching has been reported by one individual in a clinical trial (105354).
Gastrointestinal ...Orally, epigastric discomfort or dyspepsia have been reported by up to four individuals in clinical trials (105354,105356).
Hepatic ...In clinical research, increased serum glutamic pyruvic transaminase (SGPT) levels, with otherwise normal liver function, occurred in patients taking Ayurvedic formulations containing ginger, Tinospora cordifolia, and Indian gooseberry, with or without Boswellia serrata. The SGPT levels normalized after discontinuing the treatments (89557). It is unclear if these hepatic effects were due to Indian gooseberry or other ingredients contained in the formulations.
Musculoskeletal ...Orally, musculoskeletal pain has been reported by three individuals in a clinical trial (105354).
Neurologic/CNS ...Orally, fatigue has been reported by one individual in a clinical trial (105354).
Pulmonary/Respiratory ...Orally, breathlessness has been reported by one individual in a clinical trial (105354).
General
...Orally, neem extracts seem to be well tolerated in adults.
However, high-quality assessment of safety has not been conducted. In children, oral use of neem oil can cause serious adverse effects. Topically, neem seems to be well tolerated in children and adults.
Most Common Adverse Effects:
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Cardiac arrest, nephrotoxicity, and ventricular fibrillation with neem leaf in adults. Encephalopathy, hematologic abnormalities, hepatotoxicity, and nephrotoxicity with neem oil in infants and young children.
Cardiovascular ...Orally, neem leaf has been reported to cause ventricular fibrillation and cardiac arrest after ingestion in humans (64873,64870).
Dental ...Topically, use of neem twigs to brush teeth, which is a traditional dental hygiene practice in India, has been associated with vitiligo of the lips. The limonoid constituents in neem, which have been shown to inhibit melanogenesis and have cytotoxic effects, combined with repeated, local trauma from this dental hygiene practice are thought to cause this leucodermic reaction. In a case series of seven patients experiencing vitiligo of the lips from neem twigs, use of toothpaste and topical tacrolimus along with avoidance of neem stopped the progression of depigmentation in all patients. Repigmentation was reported in four of the seven patients 12 months after discontinuing neem-based dental hygiene practices (100958).
Dermatologic ...Topically, neem products have been associated with dermatologic reactions. Some case reports have associated the use of topical neem oil with contact dermatitis (64851,94568,102867). In one case series, the topical application of neem seed extract shampoo was associated with skin irritation, red spots, and a burning feeling of the scalp (64848). Use of neem twigs to brush teeth, which is a traditional dental hygiene practice in India, has been associated with vitiligo of the lips. The limonoid constituents in neem, which have been shown to inhibit melanogenesis and have cytotoxic effects, combined with repeated, local trauma from this dental hygiene practice are thought to cause this leucodermic reaction. In a case series of seven patients experiencing vitiligo of the lips from neem twigs, use of toothpaste and topical tacrolimus along with avoidance of neem stopped the progression of depigmentation in all patients. Repigmentation was reported in four of the seven patients 12 months after discontinuing neem-based dental hygiene practices (100958).
Gastrointestinal ...Orally, neem oil has been reported to cause vomiting and loose stools in infants and small children (3473,3474,3476,64865).
Genitourinary ...Orally, neem leaf has been reported to cause oliguria and anuria in adults (12833,12834). After a single intrauterine instillation, purified neem oil has been reported to cause endometritis in healthy, tubectomised females (64886).
Hematologic
...Orally, neem leaf has been reported to cause hemolysis in adults (12835).
In one case report, a 35-year-old male with diabetes and glucose-6-phosphate dehydrogenase (G6PD) deficiency developed hemolytic anemia and jaundice after drinking several liters of neem tea daily for 3 weeks. All symptoms resolved after discontinuation and supportive treatment (94571). Orally, neem oil has been reported to cause metabolic acidosis, anemia, and polymorphonuclear leukocytosis in infants and young children (3473,3474,3476,64865).
A single intrauterine instillation of purified neem oil has been reported to cause mild transient eosinophilia in healthy, tubectomised females (64886).
Hepatic ...Orally, neem oil has been associated with reports of hepatotoxicity in infants and children. These adverse effects occurred after single doses of neem oil ranging from a few drops to 60 mL. Pathologic findings on liver biopsy reports have been consistent with Reye-like syndrome (3473,3474,3475).
Immunologic ...Topically, a case of aggravated bullous pemphigoid requiring hospitalization is reported in a 47-year-old patient with this autoimmune condition after application of neem oil to blisters for an unknown duration (111715).
Neurologic/CNS ...Orally, single doses of neem oil ranging from a few drops to 60 mL have been associated with reports of encephalopathy in infants and small children. Symptoms include drowsiness, seizure, loss of consciousness, coma, cerebral edema, Reye-like syndrome, and death within hours of ingestion (3473,3474,3476,3476,64855,94750). There is also at least one case report of neurotoxicity in an adult after ingestion of a neem-based pesticide. A 35-year-old female experienced neurotoxicity requiring intensive medical care and ventilation after ingestion of a pesticide containing azadirachtin, a constituent of neem oil (64858).
Ocular/Otic ...In one case report, a 35-year-old female developed toxic optic neuropathy and vision loss in both eyes lasting for two days after consuming 150 mL of neem oil in a suicide attempt five days earlier (64856).
Renal ...Orally, neem leaf has been reported to cause oliguria, anuria, acute tubular necrosis, and nephrotoxicity in adults (12833,12834). There are some case reports of children developing Reye-like syndrome after ingestion of neem oil. Pathologic findings on renal biopsy reports have been consistent with Reye syndrome (3473,3474,3475).
General ...Orally, picrorhiza may cause vomiting, rash, anorexia, diarrhea, itching, and giddiness (11858).
Dermatologic ...Orally, picrorhiza may cause rash and itching (11858).
Gastrointestinal ...Orally, picrorhiza may cause vomiting, anorexia, and diarrhea (11858).
Neurologic/CNS ...Orally, picrorhiza may cause giddiness (11858).
General ...There is currently a limited amount of information available on the adverse effects of oral Terminalia arjuna. A thorough evaluation of safety outcomes has not been conducted.
General
...Orally, Tinospora cordifolia seems to be well tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Headache and nasal pain.
Topically: Burning, erythema, and pruritus.
Serious Adverse Effects (Rare):
Orally: Liver injury has been reported.
Dermatologic ...Topically, Tinospora cordifolia has been reported to cause pruritus, erythema, and burning (92220).
Hepatic
...Orally, liver injury is reported after consumption of Tinospora cordifolia.
In 2 case series, autoimmune hepatitis, acute hepatitis, worsening of chronic liver disease, or acute liver failure is reported in 49 patients after consuming various forms and doses of Tinospora cordifolia alone or in combination with other ingredients for a median of 42-90 days. Of these patients, 2 required a liver transplant and 4 died (110533,110534).
Liver injury is also reported in patients taking combination supplements containing Tinospora cordifolia. One case reports a 50-year-old female who presented with a 2-week history of constant right upper quadrant abdominal pain, nausea, loss of appetite, and fatigue, along with severely elevated alanine transaminase (ALT) and aspartate aminotransferase (AST), after taking a specific combination product containing Tinospora cordifolia 900 mg, stinging nettle 600 mg, and quercetin 600 mg (HistaEze) daily for 4 to 5 weeks (112404). Another case reports a 54-year-old female who developed acute hepatitis with elevated ALT, AST, alkaline phosphatase, gamma-glutamyl transferase, and bilirubin after consuming a multi-ingredient product containing approximately 1900 mg of Tinospora cordifolia and 11 other Ayurvedic herbals daily for 2.5 months (112405). In both cases, liver function returned to normal within 3 months of discontinuing the supplement (112404,112405). It is unclear whether the liver injury in these cases is due to Tinospora cordifolia, other ingredients, or the combination.
Neurologic/CNS ...Orally, Tinospora cordifolia has been reported to cause headache in a clinical trial (15085).
Pulmonary/Respiratory ...Orally, Tinospora cordifolia extract has been reported to cause nasal pain in a clinical trial (15085).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148,114899). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118,114898,114899), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430,114898,114899), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, turmeric has been associated with headache and vertigo (81163,114898).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).