Each capsule contains: Proprietary Blend 750.0 mg Psyllium seed powder (plantago psylllium), Flaxseed powder (linum usitatissimum), Cascara Sagrada bark powder (rhamus purshiana), Rhubarb root powder (Rheum Palmatum), Goldenseal root powder (Hydrastis canadensis), Ginger root (zingiber officinale), fennel seed (foeniculum vulgare), Marshmallow root (althaea officinalis), Slippery Elm bark (ulmus fulva), Raspberry leaves (rubus idaeus), Lactobacillus acidophilus Base Equivalent to 50 mg at 20 Billion Colonies per Gram.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Internal Flush. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Internal Flush. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally with appropriate fluid intake (93216). Blond psyllium preparations have been safely used in doses up to 20 grams per day for up to 6 months (1376,2324,2327,6261,6262,8060,8061,8066,8423,9422) (10095,13102,22961,22962,22963,22964,22966,54260,22968,22969) (22970,22972,22973,22976,22977,22978,22979,22980,22981,22986) (22987,22988,22989,22990,22992,22993,22994,22995,22996,22998) (23402,23403,23404,23405,92198,106859,112994). The U.S. Food and Drug Administration (FDA) requires over-the-counter medicines that contain dry or incompletely hydrated psyllium to carry a warning that they should be taken with at a least a full glass of liquid to reduce the risk of choking. This labeling also applies to foods containing psyllium that are marketed with a health claim regarding coronary heart disease (93217,93218)..
POSSIBLY SAFE ...when used in eye drops. Blond psyllium mucilage has been used with apparent safety in eye drops four times daily for 6 weeks (105274). There is insufficient reliable information available about the safety of blond psyllium when used topically.
LIKELY UNSAFE ...when used orally without adequate fluid intake due to the risk for choking and gastrointestinal obstruction (93218,112998). ...when granular dosage forms containing blond psyllium are used as over the counter (OTC) laxatives. The U.S. Food and Drug Administration (FDA) states that these granular dosage forms are not generally recognized as safe and effective as OTC laxatives due to an increased risk of choking and gastrointestinal obstruction (93219).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Blond psyllium husk has been used with apparent safety in doses up to 12 grams daily for 4 weeks (110763).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (272).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Cascara sagrada seems to be safe when used for less than one week (272,25023,40087). Cascara sagrada was formerly approved by the US Food and Drug Administration (FDA) as a safe and effective over-the-counter (OTC) laxative, but this designation was removed in 2002 due to a lack of supporting evidence (8229).
POSSIBLY UNSAFE ...when used orally, long-term. Using cascara sagrada for more than 1-2 weeks can lead to dependence, electrolyte loss, and hypokalemia (272).
CHILDREN: POSSIBLY UNSAFE
when used orally in children.
Cascara sagrada should be used cautiously in children due to the risk of electrolyte loss and hypokalemia (272).
PREGNANCY:
Insufficient reliable information available; avoid using.
LACTATION: POSSIBLY UNSAFE
when used orally.
Cascara sagrada is excreted into breast milk and might cause diarrhea (272).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fennel has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when fennel essential oil or extract is used orally and appropriately, short-term. Twenty-five drops (about 1.25 mL) of fennel fruit extract standardized to fennel 2% essential oil has been safely used four times daily for 5 days (49422). Also, two 100 mg capsules each containing fennel 30% essential oil standardized to 71-90 mg of anethole has been safely used daily for 8 weeks (97498). Powdered fennel extract has been used with apparent safety at a dose of 800 mg daily for 2 weeks (104199). ...when creams containing fennel 2% to 5% are applied topically (49429,92509).
CHILDREN: POSSIBLY SAFE
when combination products containing fennel are used to treat colic in infants for up to one week.
Studied products include up to 20 mL of a fennel seed oil emulsion; a specific product (ColiMil) containing fennel 164 mg, lemon balm 97 mg, and German chamomile 178 mg; and up to 450 mL of a specific tea (Calma-Bebi, Bonomelli) containing fennel, chamomile, vervain, licorice, and lemon balm (16735,19715,49428).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Observational research has found that regular use of fennel during pregnancy is associated with shortened gestation (100513).
LACTATION: POSSIBLY UNSAFE
when used orally.
Case reports have linked consumption of an herbal tea containing extracts of fennel, licorice, anise, and goat's rue to neurotoxicity in two breast-feeding infants. The adverse effect was attributed to anethole, a constituent of fennel and anise (16744). However, levels of anethole were not measured in breastmilk, and the herbal tea was not tested for contaminants. Furthermore, other adverse effects related to use of fennel during lactation have not been reported. However, until more is known, avoid using.
LIKELY SAFE ...when ground flaxseed is used orally and appropriately. Ground flaxseed has been safely used in numerous clinical trials in doses up to 30-60 grams daily for up to 1 year (6803,6808,8020,10952,10978,12908,12910) (16760,16761,16762,16765,16766,18224,21191,21194,21196,21198) (21199,21200,22176,22179,22180,22181,65866,66065) (101943,101949,101950).
POSSIBLY SAFE ...when flaxseed lignan extract or mucilage is used orally and appropriately. Some clinical research shows that a specific flaxseed lignan extract (Flax Essence, Jarrow Formulas) 600 mg daily can be used with apparent safety for up to 12 weeks (16768). Additional clinical research shows that other flaxseed lignin extracts can be used with apparent safety for up to 6 months (21193,21197,21200). In one clinical trial, flaxseed mucilage was used with apparent safety at a dose of up to 5120 mg daily for up to 12 weeks (108047)....when flaxseed is used topically in a warm poultice (101946).
POSSIBLY UNSAFE ...when raw or unripe flaxseed is used orally. Raw flaxseed contains potentially toxic cyanogenic glycosides (linustatin, neolinustatin, and linamarin); however, these glycosides have not been detected after flaxseed is baked (5899). Unripe flaxseeds are also thought to be poisonous when consumed due to cyanide content.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Flaxseed can have mild estrogenic effects. Theoretically, this might adversely affect pregnancy (9592,12907); however, there is no reliable clinical evidence about the effects of flaxseed on pregnancy outcomes.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
POSSIBLY SAFE ...when used orally and appropriately as a single dose (260,261). There is insufficient reliable information available about the safety of goldenseal when used as more than a single dose.
CHILDREN: LIKELY UNSAFE
when used orally in newborns.
The berberine constituent of goldenseal can cause kernicterus in newborns, particularly preterm neonates with hyperbilirubinemia (2589).
PREGNANCY: LIKELY UNSAFE
when used orally.
Berberine is thought to cross the placenta and may cause harm to the fetus. Kernicterus has developed in newborn infants exposed to goldenseal (2589).
LACTATION:
LIKELY UNSAFE when used orally.
Berberine and other harmful constituents can be transferred to the infant through breast milk (2589). Use during lactation can cause kernicterus in the newborn and several resulting fatalities have been reported (2589).
LIKELY SAFE ...when used orally and appropriately. Lactobacillus acidophilus has been safely used as part of multi-ingredient probiotic products in studies lasting up to nine months (1731,6087,14370,14371,90231,90296,92255,103438,12775,107581)(110950,110970,110979,110998,111785,111793). ...when used intravaginally and appropriately. L. acidophilus has been used safely in studies lasting up to 12 weeks (12108,13176,13177,90265). There is insufficient reliable information available about the safety of non-viable, heat-killed L. acidophilus formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lactobacillus acidophilus has been safely used for up to 5 days (96887). Also, combination probiotics containing L. acidophilus have been used with apparent safety in various doses and durations. L. acidophilus has been combined with Bifidobacterium animalis (HOWARU Protect, Danisco) for up to 6 months in children 3-5 years old (16847), with Bifidobacterium bifidum for 6 weeks (90602,96890), with Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis (Complete Probiotic Platinum) for 18 months in children 4 months to 5 years of age (103436), and in a specific product (Visbiome, ExeGi Pharma) containing a total of 8 species for 3 months in children 2-12 years old (107497). There is insufficient reliable information available about the safety of L. acidophilus in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lactobacillus acidophilus during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when marshmallow root and leaf are used in amounts commonly found in foods. Marshmallow root has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when marshmallow root and leaf are used orally in medicinal amounts (4,12). ...when used topically (4,62020). There is insufficient reliable information available about the safety of marshmallow flower.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
LIKELY SAFE ...when the fruit is used orally in amounts commonly found in foods (13622).
POSSIBLY SAFE ...when the fruit is used orally and appropriately in medicinal amounts (6481,9796). There is insufficient reliable information available about the safety of red raspberry leaf when used orally or topically.
PREGNANCY: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
PREGNANCY: POSSIBLY SAFE
when red raspberry leaf is used orally and appropriately in medicinal amounts during late pregnancy under the supervision of a healthcare provider.
Red raspberry leaf is used by nurse midwives to facilitate delivery. There is some evidence that red raspberry leaf in doses of up to 2.4 grams daily, beginning at 32 weeks' gestation and continued until delivery, can be safely used for this purpose (6481,9796). Make sure patients do not use red raspberry leaf without the guidance of a healthcare professional.
PREGNANCY: LIKELY UNSAFE
when red raspberry leaf is used orally in medicinal amounts throughout pregnancy or for self-treatment.
Red raspberry leaf might have estrogenic effects (6180). These effects can adversely affect pregnancy. Tell pregnant patients not to use red raspberry leaf at any time during pregnancy without the close supervision of a healthcare provider.
LACTATION: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
There is insufficient reliable information available about the safety of red raspberry leaf; avoid using.
LIKELY SAFE ...when the stalk is used in amounts commonly found in foods and when the root is used as a food flavoring. Rhubarb has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the root or rhizome is used orally and appropriately in medicinal amounts for up to 2 years (92294,92295,92297). ...when the stalk is used orally and appropriately in medicinal amounts for up to 4 weeks (71351,71363,97920). ...when used topically and appropriately (10437,97919).
POSSIBLY UNSAFE ...when the leaf is used orally. Rhubarb leaf contains oxalic acid and soluble oxalate, which can cause abdominal pain, burning of the mouth and throat, diarrhea, nausea, vomiting, seizures, and death (17).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in medicinal amounts, rhubarb root is a stimulant laxative; avoid using (12).
POSSIBLY SAFE ...when used orally and appropriately (4,12,272,512,1740).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Slippery elm bark has historically been inserted into the cervix to induce abortion. As a result, slippery elm has been reported in some sources to have abortifacient activity. However, there is no reliable information available about whether slippery elm has abortifacient activity when taken orally.
Below is general information about the interactions of the known ingredients contained in the product Internal Flush. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, blond psyllium might reduce the effects of carbamazepine and increase the risk for convulsions.
|
Theoretically, taking blond psyllium at the same time as digoxin might reduce digoxin absorption.
|
Theoretically, taking blond psyllium at the same time as ethinyl estradiol might alter levels of estradiol.
Concurrent use of blond psyllium with ethinyl estradiol results in a slight increase in the extent of ethinyl estradiol absorption and a slower rate of absorption. However, this is unlikely to be clinically significant (12421).
|
Theoretically, taking blond psyllium at the same time as lithium might reduce lithium absorption.
|
Theoretically, blond psyllium might increase the therapeutic and adverse effects of metformin.
Concurrent use of blond psyllium with metformin slows and increases metformin absorption (99433). To avoid changes in absorption, take psyllium 30-60 minutes after metformin.
|
Theoretically, taking blond psyllium at the same time as olanzapine might reduce olanzapine absorption.
The fiber in blond psyllium might decrease the absorption of olanzapine. A single case report describes a reduction in the effectiveness of olanzapine when it was taken concomitantly with an unspecified type of psyllium 3 grams orally twice daily. This effect was reversed when psyllium was stopped (106858).
|
Theoretically, psyllium might increase, decrease, or have no effect on the absorption of oral drugs.
Psyllium seems to have variable effects on drug absorption. To avoid changes in absorption, take psyllium 30-60 minutes after oral medications. Animal research shows that blond psyllium delays and increases the absorption of metformin and ethinyl estradiol (12421,99433). Conversely, case reports and animal research suggest that blond psyllium might reduce absorption of lithium, digoxin, olanzapine, and carbamazepine (12,18,272,93214,106858). Finally, some pharmacokinetic studies show that psyllium does not affect the absorption of levothyroxine or warfarin (12420,103940).
|
Theoretically, cascara sagrada might increase the risk of hypokalemia when taken with corticosteroids.
|
Theoretically, cascara sagrada might decrease the effects of CYP3A4 substrates.
In vitro research suggests that cascara sagrada can induce CYP3A4 enzymes, albeit to a much lower degree than rifampin, a known CYP3A4 inducer (110704).
|
Theoretically, cascara sagrada might cause hypokalemia, potentially increasing the risk of digoxin toxicity.
|
Theoretically, cascara sagrada might increase the risk of hypokalemia when taken with diuretic drugs.
|
Theoretically, cascara sagrada might have additive adverse effects when taken with stimulant laxatives.
Cascara sagrada has stimulant laxative effects and might compound fluid and electrolyte losses when taken with stimulant laxatives (19).
|
Theoretically, cascara sagrada might increase the risk of bleeding when taken with warfarin.
Cascara sagrada has stimulant laxative effects (19). In some people, cascara sagrada can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding.
|
Theoretically, fennel might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
|
Theoretically, fennel might decrease the levels and clinical effects of ciprofloxacin.
Animal research shows that fennel reduces ciprofloxacin bioavailability by nearly 50%, possibly due to the metal cations such as calcium, iron, and magnesium contained in fennel. This study also found that fennel increased tissue distribution and slowed elimination of ciprofloxacin (6135). |
Theoretically, taking large amounts of fennel might decrease the effects of contraceptive drugs due to competition for estrogen receptors.
|
Theoretically, fennel might increase levels of drugs metabolized by CYP3A4.
|
Theoretically, taking large amounts of fennel might interfere with hormone replacement therapy due to competition for estrogen receptors.
|
Theoretically, taking large amounts of fennel might decrease the antiestrogenic effect of tamoxifen.
Some constituents of fennel have estrogenic activity (11), which may interfere with the antiestrogenic activity of tamoxifen. |
Theoretically, antibiotics might interfere with the metabolism of flaxseed constituents, which could potentially alter the effects of flaxseed.
Some potential benefits of flaxseed are thought to be due to its lignan content. Secoisolariciresinol diglucoside (SDG), a major lignan precursor, is found in high concentrations in flaxseed. SDG is converted by bacteria in the colon to the lignans enterolactone and enterodiol (5897,8022,8023,9592). Antibiotics alter the flora of the colon, which could theoretically alter the metabolism of flaxseed.
|
Theoretically, using flaxseed in combination with anticoagulant or antiplatelet drugs might have additive effects and increase the risk of bleeding.
|
Theoretically, flaxseed might have additive effects when used with antidiabetes drugs and increase the risk for hypoglycemia.
|
Theoretically, flaxseed might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking flaxseed might decrease the effects of estrogens.
Flaxseed contains lignans with mild estrogenic and possible antiestrogenic effects. The lignans seem to compete with circulating endogenous estrogen and might reduce estrogen binding to estrogen receptors, resulting in an anti-estrogen effect (8868,9593). It is unclear if this effect transfers to exogenously administered estrogens.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, goldenseal might increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
|
Theoretically, goldenseal might increase the risk of hypoglycemia when used with antidiabetes drugs.
|
Theoretically, goldenseal might increase the risk of hypotension when taken with antihypertensive drugs.
Goldenseal contains berberine. Animal research shows that berberine can have hypotensive effects (33692,34308). Also, an analysis of clinical research shows that taking berberine in combination with amlodipine can lower systolic and diastolic blood pressure when compared with amlodipine alone (91956). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might increase the sedative effects of CNS depressants.
|
Theoretically, goldenseal might increase serum levels of drugs metabolized by CYP2C9.
In vitro research shows that goldenseal root extract can modestly inhibit CYP2C9. This effect may be due to its alkaloid constituents, hydrastine and berberine (21117). However, this effect has not been reported in humans.
|
Goldenseal might increase serum levels of drugs metabolized by CYP2D6.
|
Theoretically, goldenseal might increase serum levels of drugs metabolized by CYP2E1.
In vitro research shows that goldenseal root extract can inhibit the activity of CYP2E1 (94140). However, this effect has not been reported in humans.
|
Goldenseal might increase serum levels of drugs metabolized by CYP3A4.
Most clinical and in vitro research shows that goldenseal inhibits CYP3A4 enzyme activity and increases serum levels of CYP3A4 substrates, such as midazolam (6450,13536,21117,91740,111725). However, in one small clinical study, goldenseal did not affect the levels of indinavir, a CYP3A4 substrate, in healthy volunteers (10690,93578). This is likely due to the fact that indinavir has a high oral bioavailability, making it an inadequate probe for CYP3A4 interactions (13536,91740) and/or that it is primarily metabolized by hepatic CYP3A, while goldenseal has more potential to inhibit intestinal CYP3A enzyme activity (111725). Both goldenseal extract and its isolated constituents berberine and hydrastine inhibit CYP3A, with hydrastine possibly having more inhibitory potential than berberine (111725).
|
Theoretically, goldenseal might increase serum levels of dextromethorphan.
Goldenseal contains berberine. A small clinical study shows that berberine can inhibit cytochrome P450 2D6 (CYP2D6) activity and reduce the metabolism of dextromethorphan (34279).
|
Goldenseal might increase serum levels of digoxin, although this effect is unlikely to be clinically significant.
Clinical research shows that goldenseal modestly increases digoxin peak levels by about 14% in healthy volunteers. However, goldenseal does not seem to affect other pharmacokinetic parameters such as area under the curve (AUC) (15132). This suggests that goldenseal does not cause a clinically significant interaction with digoxin. Digoxin is a P-glycoprotein substrate. Some evidence suggests that goldenseal constituents might affect P-glycoprotein; however, it is unclear whether these constituents inhibit or induce P-glycoprotein.
|
Theoretically, goldenseal might decrease the conversion of losartan to its active form.
Goldenseal contains berberine. A small clinical study shows that berberine inhibits cytochrome P450 2C9 (CYP2C9) activity and reduces the metabolism of losartan (34279). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might reduce blood levels of metformin.
In vitro research shows that goldenseal extract decreases the bioavailability of metformin, likely by interfering with transport, intestinal permeability, or other processes involved in metformin absorption. It is unclear which, if any, of metformin's transporters are inhibited by goldenseal. Goldenseal does not appear to alter the clearance or half-life of metformin (105764).
|
Theoretically, goldenseal might reduce the therapeutic effects of oseltamivir by decreasing its conversion to its active form.
In vitro evidence suggests that goldenseal reduces the formation of the active compound from the prodrug oseltamivir (105765). The mechanism of action and clinical relevance is unclear.
|
Theoretically, goldenseal might increase or decrease serum levels of P-glycoprotein (P-gp) substrates.
There is conflicting evidence about the effect of goldenseal on P-gp. In vitro research suggests that berberine, a constituent of goldenseal, modestly inhibits P-gp efflux. Other evidence suggests that berberine induces P-gp. In healthy volunteers, goldenseal modestly increases peak levels of the P-gp substrate digoxin by about 14%. However, it does not seem to affect other pharmacokinetic parameters such as area under the curve (AUC) (15132). This suggests that goldenseal is not a potent inhibitor of P-gp-mediated drug efflux. Until more is known, goldenseal should be used cautiously with P-gp substrates.
|
Theoretically, goldenseal might increase the sedative effects of pentobarbital.
Animal research shows that berberine, a constituent of goldenseal, can prolong pentobarbital-induced sleeping time (13519). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might increase serum levels of tacrolimus.
Goldenseal contains berberine. In a 16-year-old patient with idiopathic nephrotic syndrome who was being treated with tacrolimus 6.5 mg twice daily, intake of berberine 200 mg three times daily increased the blood concentration of tacrolimus from 8 to 22 ng/mL. Following a reduction of tacrolimus dosing to 3 mg daily, blood levels of tacrolimus decreased to 12 ng/mL (91954).
|
Theoretically, taking Lactobacillus acidophilus with antibiotic drugs might decrease the effectiveness of L. acidophilus.
L. acidophilus preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. acidophilus preparations by at least two hours.
|
Theoretically, marshmallow flower might have antiplatelet effects.
Animal research suggests that marshmallow flower extract has antiplatelet effects (92846). However, the root and leaf of marshmallow, not the flower, are the plant parts most commonly found in dietary supplements. Theoretically, use of marshmallow flower with anticoagulant/antiplatelet drugs can have additive effects, and might increase the risk for bleeding in some patients.
|
Theoretically, due to potential diuretic effects, marshmallow might reduce excretion and increase levels of lithium.
Marshmallow is thought to have diuretic properties. To avoid lithium toxicity, the dose of lithium might need to be decreased when used with marshmallow.
|
Theoretically, mucilage in marshmallow might impair absorption of oral drugs.
|
Theoretically, taking red raspberry leaf with anticoagulant/antiplatelet drugs might increase the risk of bleeding.
In vitro research suggests that red raspberry leaf extract has antiplatelet activity and enhances the in vitro effects of the antiplatelet medication cangrelor (96300). This interaction has not been reported in humans.
|
Red raspberry leaf might reduce glucose levels in patients being treated with insulin.
In one case report, a 38-year-old patient with gestational diabetes, whose blood glucose was being controlled with medical nutrition therapy and insulin, developed hypoglycemia after consuming two servings of raspberry leaf tea daily for 3 days beginning at 32 weeks' gestation. The patient required an insulin dose reduction. The hypoglycemia was considered to be probably related to use of red raspberry leaf tea (96299).
|
Theoretically, frequent and high doses of rhubarb might increase the risk of hypokalemia when taken with corticosteroids.
|
Theoretically, taking rhubarb with cyclosporine might reduce cyclosporine levels.
Animal research shows that co-administration of rhubarb decoction 0.25 or 1 gram/kg with cyclosporine 2.5 mg/kg, decreases cyclosporine maximum plasma concentration and overall exposure levels when compared with taking cyclosporine alone. The authors theorize that rhubarb might reduce cyclosporine bioavailability by inducing of P-glycoprotein and/or cytochrome P450 3A4 (92304). However, since rhubarb was administered as a single oral dose and enzyme induction usually occurs after multiple doses, it is possible that cyclosporine absorption was actually reduced via rhubarb's stimulant laxative effects (12). Also, the composition of the rhubarb decoction was not described.
|
Theoretically, overuse of rhubarb might increase the risk of adverse effects when taken with digoxin.
|
Theoretically, frequent and high doses of rhubarb might increase the risk of hypokalemia.
|
Theoretically, concomitant use of rhubarb with potentially hepatotoxic drugs might increase the risk of developing liver damage.
|
Theoretically, long-term use of anthraquinones from rhubarb might increase the risk of nephrotoxicity when used with nephrotoxic drugs.
The anthraquinone constituents of rhubarb have been shown to induce nephrotoxicity in animal research (71322). Additionally, in a case report, a 23-year old female presented with kidney failure after taking 6 tablets of a proprietary slimming agent (found to contain the anthraquinones emodin and aloe-emodin from rhubarb) daily for 6 weeks and then adding diclofenac 25 mg 4 times daily for 2 days. The authors postulate that the anthraquinone constituents of rhubarb contributed to the renal dysfunction, and the addition of diclofenac, a nephrotoxic drug, led to renal failure (15257). Until more is known, advise patients to avoid taking rhubarb if they are taking other potentially nephrotoxic drugs.
|
Theoretically, rhubarb might increase the risk for fluid and electrolyte loss when taken with other stimulant laxatives.
|
Theoretically, excessive use of rhubarb might increase the risk of bleeding when taken with warfarin.
|
Theoretically, slippery elm may slow the absorption and reduce serum levels of oral drugs.
Slippery elm inner bark contains mucilage, which may interfere with the absorption of orally administered drugs (19).
|
Below is general information about the adverse effects of the known ingredients contained in the product Internal Flush. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, blond psyllium is generally well tolerated.
When used as eye drops, blond psyllium seems to be well tolerated.
Most Common Adverse Effects:
Oral: Abdominal pain, constipation, diarrhea, dyspepsia, flatulence, and nausea.
Serious Adverse Effects (Rare):
Oral: Bowel obstruction, esophageal obstruction.
Gastrointestinal ...Orally, blond psyllium can cause transient flatulence, abdominal pain, diarrhea, constipation, dyspepsia, and nausea (1376). Starting with a low dose and slowly titrating to the desired dose can often minimize gastrointestinal side effects. There is some concern that blond psyllium can cause esophageal or bowel obstruction when consumed without adequate water or in patients with swallowing disorders (604,8080,8081,110760,112998). Orally, blond psyllium seed husk powder has been linked to an esophageal obstruction from a bezoar in a 76-year-old male patient with Parkinson's disease and probable dysphagia (110760). Symptoms occurred within hours of taking the psyllium and were resolved when the bezoar was removed. Additionally, blond psyllium-containing foods were linked to an intestinal obstruction in a 26-year-old male who had been consuming them for weight loss (112998). Drainage with an ileus tube successfully removed an obstruction with a thick, gel-like consistency. Tell patients to consume plenty of water when taking blond psyllium. Suggest at least 240 mL of fluid for every 3.5-5 grams of seed husk or 7 grams of seed (1376,8080,8081).
Immunologic
...Some patients can have an allergic response to blond psyllium.
Allergy symptoms include allergic rhinitis, sneezing, conjunctivitis, urticarial rash, itching, flushing, and dyspnea. More serious symptoms include wheezing, facial and body swelling, chest congestion, chest and throat tightness, cough, diarrhea, hypotension, loss of consciousness, and anaphylactic shock. Occupational exposure or repeated ingestion of psyllium can cause sensitization, which can lead to serious allergic reactions (2328,2329,2330,8079,9246,92193). Severe allergic reactions may occur after eating a small quantity of cereal that contains blond psyllium. At least one cereal (Heartwise, Kellogg Co.) has increased the purity of the psyllium it contains, which has decreased the incidence of allergic reactions (9244). A warning of the potential for allergic reactions is on the label of all cereals that contain psyllium (9247). Patients hypersensitive to psyllium usually have marked eosinophilia and an elevated psyllium-specific IgE antibody serum level (2328,2329,92193).
There is concern that individuals allergic to pollen from English plantain weed (Plantain lanceolate) might also react to psyllium husk dust; however, it appears that there is little cross-allergenicity between these plants and is probably mild and of no clinical significance (8057,9244,92193).
Musculoskeletal ...Orally, backache has been reported with the use of psyllium (1376).
Neurologic/CNS ...Orally, headache has been reported with the use of psyllium (1376).
Ocular/Otic ...Ophthalmically, blurred vision or burning haven been reported rarely in patients using eye drops containing blond psyllium mucilage (105274).
Pulmonary/Respiratory ...Orally, rhinitis, increased cough, and sinusitis have been reported with the use of psyllium (1376).
Other ...Blond psyllium has a tendency to plug feeding tubes. This can be avoided if blond psyllium is mixed with water and pushed through the feeding tube in less than 5 minutes (8423).
General
...Orally, cascara sagrada seem to be well tolerated when used appropriately, short-term.
Most Common Adverse Effects:
Orally: Mild abdominal discomfort and cramps.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity. Fresh or improperly aged cascara sagrada bark can cause severe vomiting.
Endocrine ...Orally, long-term use of cascara sagrada can lead to potassium depletion (4).
Gastrointestinal
...Orally, cascara sagrada can commonly cause mild abdominal discomfort, colic, and cramps (4).
In some cases, chronic use can cause pseudomelanosis coli. Pseudomelanosis coli (pigment spots in intestinal mucosa) is believed to be harmless, usually reverses with discontinuation, and is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138).
Fresh or improperly aged cascara sagrada bark can cause severe vomiting due to the presence of free anthrone constituents (2,92307).
Genitourinary ...Orally, long-term use of cascara sagrada can lead to albuminuria and hematuria (4).
Hepatic ...There is some concern about potential liver problems with cascara sagrada. In some cases, cascara sagrada bark 750-1275 mg (containing approximately 21 mg cascaroside) daily in divided doses for three days resulted in cholestatic hepatitis, ascites, and portal hypertension. Symptoms resolved following discontinuation of cascara sagrada (6895,92306).
Musculoskeletal ...Orally, long-term use of cascara sagrada can lead to muscle weakness and finger clubbing (4).
Other ...Orally, long-term use of cascara sagrada can lead to cachexia (4).
General
...Orally and topically, fennel seems to be well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal discomfort, photosensitivity, and allergic reactions in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Seizures.
Dermatologic ...Advise patients to avoid excessive sunlight or ultraviolet light exposure while using fennel (19). Allergic reactions affecting the skin such as atopic dermatitis and photosensitivity may occur in patients who consume fennel (6178,49507).
Gastrointestinal ...Orally, fennel may cause gastrointestinal complaints, including nausea and vomiting (19146,104196).
Hematologic ...Methemoglobinemia has been reported in four infants following intoxication related to ingestion of a homemade fennel puree that may have been made from improperly stored fennel (49444).
Immunologic ...A case report describes an 11-year-old male who developed an allergy to fennel-containing toothpaste. Immediately after using the toothpaste, the patient experienced sneezing, coughing, itchy mouth, rhinorrhea, nasal congestion, wheezing, difficulty breathing, and palpitations, which resolved within 10 minutes of spitting out the toothpaste and rinsing the mouth. In challenge tests, the patient reacted to chewing fresh fennel root, but not ground fennel seeds (103822).
Neurologic/CNS ...Orally, fennel oil has been associated with tonic clonic and generalized seizures (12868). New-onset cluster headaches are reported in a 24-year-old female while using a toothpaste containing fennel and camphor for 3 months. The headaches resolved upon stopping the toothpaste (112368). It is unclear if this adverse effect can be attributed to fennel, camphor, or the combination.
Pulmonary/Respiratory ...Orally, fennel and fennel seed have been reported to cause bronchial asthma (49478).
General
...Orally, flaxseed is usually well-tolerated.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, gastrointestinal complaints.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions such as and anaphylaxis.
Gastrointestinal
...Integrating flaxseed in the diet can cause digestive symptoms similar to other sources of dietary fiber including bloating, fullness, flatulence, abdominal pain, diarrhea, constipation, dyspepsia, and nausea (12910,16761,16765,21198,21200,22176,22179,65866,101943).
Higher doses are likely to cause more gastrointestinal side effects. Flaxseed can significantly increase the number of bowel movements and the risk for diarrhea (6803,8021,16765). Doses greater than 45 grams per day may not be tolerated for this reason (6802). Metallic aftertaste and bowel habit deterioration have also been reported in a clinical trial (21198).
There is some concern that taking large amounts of flaxseed could result in bowel obstruction due to the bulk forming laxative effects of flaxseed. Bowel obstruction occurred in one patient in a clinical trial (65866). However, this is not likely to occur if flaxseed is consumed with an adequate amount of fluids.
Immunologic ...Occasionally, allergic and anaphylactic reactions have been reported after ingestion of flaxseed (16761). Handling and processing flaxseed products might increase the risk of developing a positive antigen test to flaxseed and hypersensitivity (6809,12911,26471,26482).
Oncologic ...Flaxseed contains alpha-linolenic acid (ALA). High dietary intake of ALA has been associated with increased risk for prostate cancer (1337,2558,7823,7147,12978). However, ALA from plant sources, such as flaxseed, does not seem to increase this risk (12909).
Other ...Orally, partially defatted flaxseed, which is flaxseed with less alpha-linolenic acid, might increase triglyceride levels (6808). Raw or unripe flaxseed contains potentially toxic cyanogenic glycosides (linustatin, neolinustatin, and linamarin). These chemicals can increase blood levels and urinary excretion of thiocyanate in humans. However, these glycosides have not been detected after flaxseed is baked (5899).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...There is limited reliable information available about the safety of goldenseal when used in more than a single dose.
Berberine, a constituent of goldenseal, is generally well tolerated when used orally.
Most Common Adverse Effects:
Orally: Berberine, a constituent of goldenseal, can cause abdominal distension, abdominal pain, bitter taste, constipation, diarrhea, flatulence, headache, nausea, and vomiting.
Dermatologic ...Orally, berberine, a constituent of goldenseal, may cause rash. However, this appears to be rare (34285). A case of photosensitivity characterized by pruritic, erythematous rash on sun-exposed skin has been reported in a 32-year-old female taking a combination product containing goldenseal, ginseng, bee pollen, and other ingredients. The rash resolved following discontinuation of the supplement and treatment with corticosteroids (33954). It is not clear if this adverse effect is due to goldenseal, other ingredients, or the combination.
Endocrine ...A case of severe, reversible hypernatremia has been reported in an 11-year-old female with new-onset type 1 diabetes and diabetic ketoacidosis who took a goldenseal supplement (52592).
Gastrointestinal ...Orally, berberine, a constituent of goldenseal, may cause diarrhea, constipation, flatulence, vomiting, abdominal pain, abdominal distention, and bitter taste (33648,33689,34245,34247,34285,91953). Theoretically, these effects may occur in patients taking goldenseal. However, this hasn't been reported in clinical research or case reports.
Neurologic/CNS ...Orally, berberine, a constituent of goldenseal, may cause headache when taken in a dose of 5 mg/kg daily (33648). Theoretically, this may occur with goldenseal, but this hasn't been reported in clinical research or case reports.
General
...Orally and intravaginally, Lactobacillus acidophilus is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Intravaginally: Vaginal discharge.
Serious Adverse Effects (Rare):
Orally: There is concern that L. acidophilus may cause infections in some people.
Dermatologic ...Orally, in one clinical trial, a combination of Lactobacillus acidophilus La-5, Lacticaseibacillus paracasei subsp. paracasei F19, and Bifidobacterium animalis subsp. lacltis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. acidophilus, other ingredients, the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Orally, taking Lactobacillus acidophilus in combination with other probiotics may cause gastrointestinal side effects including epigastric discomfort (90239), abdominal pain (90239,90291,111785), dyspepsia (90239), flatulence (107497,107520), bloating (107497,111785), diarrhea (111785), vomiting (107537), and burping (90239); however, these events are uncommon.
Genitourinary ...Intravaginally, cream containing Lactobacillus acidophilus has been shown to cause increased vaginal discharge in about 5% of patients, compared to about 1% of patients receiving placebo cream (90237). Vaginal burning was reported by one person using intravaginal L. acidophilus and Limosilactobacillus fermentum in a clinical trial (111781).
Immunologic ...Since Lactobacillus acidophilus preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. L. acidophilus has been isolated in some cases of bacteremia, sepsis, splenic abscess, liver abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract (107543,111782,111792). L. acidophilus endophthalmitis has been reported rarely (111787,111795). In one case, it was related to intravitreal injections for age-related macular degeneration in a 90-year-old female with an intraocular lens (111787). In another, it occurred following cataract surgery (111795).
General ...Orally and topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, red raspberry fruit is well tolerated.
There is currently a limited amount of information on the adverse effects of red raspberry leaf.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, and epigastric pain. However, these adverse effects do not commonly occur with typical doses.
Dermatologic ...A liquid containing red raspberry leaf cell culture extract 0. 0005%, vitamin C 20%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to red raspberry leaf, the other ingredients, or the combination.
Gastrointestinal ...Orally, red raspberry may cause gastrointestinal upset, diarrhea, and epigastric pain (112127).
Pulmonary/Respiratory ...A case of occupational asthma due to the inhalation of red raspberry powder has been reported for a 35-year-old female. Symptoms included wheezing and shortness of breath (70370).
General
...Orally, rhubarb root and stalk are well tolerated when used in food amounts and seem to be well tolerated when used in medicinal amounts.
Rhubarb leaf contains oxalic acid and can be toxic. Topically, rhubarb seems to be well tolerated.
Most Common Adverse Effects:
Orally: Cramps, diarrhea, gastrointestinal discomfort, nausea, vomiting.
Topically: Rash.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Cardiovascular ...Orally, chronic use or abuse of rhubarb can cause arrhythmias (12).
Dermatologic ...Orally, rhubarb taken alone or in combination with other ingredients has been reported to cause rash (71315,71342). Topically, short term application of a specific product (Pyralvex) containing rhubarb, salicylic acid, and ethanol to the gums has been reported to cause slight burning and dark discoloration of the gums in approximately 1% of patients (71369). It is unclear if this effect is due to rhubarb, other ingredients, or the combination.
Endocrine ...Orally, chronic use or abuse of rhubarb can cause electrolyte loss (especially potassium), hyperaldosteronism, albuminuria, and edema (12).
Gastrointestinal
...Orally, rhubarb can cause cramp-like or spasmodic gastrointestinal discomfort, watery diarrhea, and uterine contractions (18).
Rhubarb, alone or in combination with other ingredients, has also been reported to cause bloating, nausea, diarrhea, vomiting, and stomach upset or pain in clinical studies. Diarrhea is more common with a starting dose of at least 3 grams of extract (71315,71329,71339,71340,71341,71342,71373,92300). Chronic use or abuse of rhubarb can cause inhibition of gastric motility and pseudomelanosis coli (pigment spots in the intestinal mucosa) (12,6138).
Although some research suggests that rhubarb and other anthranoid laxatives might increase the risk of colorectal cancer due to pseudomelanosis coli (30743), more recent research suggests that this condition is harmless, typically reversed with rhubarb discontinuation, and not associated with an increased risk for colorectal adenoma or carcinoma (6138).
Hematologic ...Orally, chronic use or abuse of rhubarb can cause hematuria (12).
Hepatic ...Orally, chronic use of anthraquinone-containing products, such as rhubarb, has been associated with hepatotoxicity (15257). Use of rhubarb specifically has been linked to at least 24 reports of liver injury, although details on the dose of rhubarb and duration of use in these cases are not clear (100963). In one clinical study, rhubarb, taken in combination with other ingredients, has been reported to cause mild to moderate elevations of serum alanine aminotransferase (71315).
Immunologic ...Orally, rhubarb has rarely been reported to cause anaphylaxis (18).
Musculoskeletal ...Orally, chronic use or abuse of rhubarb can cause accelerated bone deterioration and muscular weakness (12).
Renal ...Orally, chronic use or abuse of rhubarb can cause electrolyte loss (especially potassium), albuminuria, hematuria, dehydration, and nephropathies (12). There is one case report of renal failure in a patient who took a product containing rhubarb for six weeks. The patient presented with renal failure two days after starting diclofenac, which is known to have nephrotoxic effects. It is hypothesized that the combination of diclofenac with the anthraquinone constituents of rhubarb precipitated renal dysfunction (15257).
General ...Orally, slippery elm seems to be well tolerated. A thorough evaluation of safety outcomes with topical use of slippery elm has not been conducted.
Dermatologic ...Topically, slippery elm extracts can cause contact dermatitis. The pollen is an allergen (6). Contact dermatitis and urticaria have been reported after exposure to slippery elm or an oleoresin contained in the slippery elm bark (75131).