Ingredients | Amount Per Serving |
---|---|
(Origanum vulgare )
(leaf)
(4:1 extract)
|
250 mg |
(Thymus vulgaris )
(leaf)
(4:1)
(4:1 extract)
|
250 mg |
(Verbascum thapsus )
(leaf)
(4:1 extract)
|
200 mg |
(Eucalyptus globulus )
(leaf)
|
200 mg |
(Quercetin Dihydrate)
|
100 mg |
(Hedera helix )
(leaf)
(4:1 extract)
|
100 mg |
(Ananas comosus)
(600 GDU/g)
|
25 mg |
Hypromellose, Rice Extract Blend
Below is general information about the effectiveness of the known ingredients contained in the product Immune Respiratory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Immune Respiratory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Doses up to 240 mg daily have been used safely for up to a year (6252,6253,10622,11457,18281,18284,91104,91105,91106,91111)(96449,103298). Higher doses up to 3200 mg daily have been used safely, short-term (18283,110546). ...when used topically and appropriately. Bromelain has been used safely as a debriding agent for up to 4 hours (18275,91113,103297,108148,108149,113899). Additionally, a retrospective cohort study in critically ill patients with severe burns suggests that use of bromelain as a debriding agent for up to 4 hours is not associated with a greater risk of bacteremia (113899).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the leaf extract is used orally and appropriately, short-term. Two specific products containing dried English ivy leaf extract 7 mg/mL (Prospan, PendoPharm; Prospanex, Engelhard Arzneimittel GmbH and Co. KG), taken in doses of 7.5 mL three times daily, have been used with apparent safety for up to 7 days (29903,106055). There is insufficient reliable information available about the safety of topical English ivy.
CHILDREN: POSSIBLY SAFE
when the leaf extract is used orally and appropriately, short-term.
Two specific products containing dried English ivy leaf extract 7 mg/mL (Prospan, PendoPharm; Prospanex, Engelhard Arzneimittel GmbH and Co. KG), taken in doses of 2.5-7.5 mL three times daily, has been used with apparent safety for up to 7 days in infants and children up to 18 years of age (29903,106055).
PREGNANCY:
Insufficient reliable information available; avoid using.
A small retrospective study suggests that taking English ivy leaf extract at an unknown dose or duration during pregnancy is not associated with changes in pregnancy duration, the rate of preterm birth, infant health complications, or infant deaths (110402). However, due to its small size, retrospective design, and insufficient information regarding dose and duration, further research is needed to determine the safety of English ivy during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Eucalyptus has Generally Recognized As Safe status (GRAS) for use in foods as a flavoring in the US (4912).
POSSIBLY SAFE ...when eucalyptol, a constituent of eucalyptus oil, is used orally and appropriately. Eucalyptol appears to be safe for up to 12 weeks (13302).
POSSIBLY UNSAFE ...when the undiluted oil is used topically. Prolonged or widespread exposure has caused neurotoxicity (12869). There is insufficient reliable information available about the safety of diluted eucalyptus oil when used topically.
LIKELY UNSAFE ...when the undiluted oil is ingested orally. Ingesting 3.5 mL of undiluted oil can be fatal in adults (12867). There is insufficient reliable information available about the safety of eucalyptus oil when inhaled as aromatherapy or when eucalyptus leaf is used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Eucalyptus has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
CHILDREN: LIKELY UNSAFE
when eucalyptus oil is used orally (12867,49002,107493,107495).
...when eucalyptus oil is used topically in infants and young children. There are reports of neurotoxicity in infants and young children exposed to topical eucalyptus oil. In one of these cases, a 12-month-old child was bathed in water containing eucalyptus oil and other essential oils; in another case, a child had a dressing containing eucalyptus oil applied every 2-4 hours daily for 2 days (12868,12869). ...when eucalyptus solutions are inhaled using a vaporizer (49002).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of medicinal amounts of eucalyptus oil; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Oregano leaf and oil have Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of oregano when used orally in amounts greater than those found in food. There is also insufficient reliable information available about the safety of oregano when used topically. Oregano oil in concentrations of greater than 1% may be irritating when applied to mucous membranes (67348,88188).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Oregano is thought to have abortifacient and emmenagogue effects (19,7122,19104).
LACTATION:
There is insufficient reliable information available about the safety of oregano when used in medicinal amounts; avoid amounts greater than those found in food.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Quercetin has been used with apparent safety in doses up to 1 gram daily for up to 12 weeks (481,1998,1999,16418,16429,16430,16431,96774,96775,96782)(99237,102539,102540,102541,104229,104679,106498,106499,107450,109620)(109621). ...when used intravenously and appropriately. Quercetin has been used with apparent safety in doses less than 945 mg/m2. Higher doses have been reported to cause nephrotoxicity (9564,16418). There is insufficient reliable information available about the safety of quercetin when used topically.
POSSIBLY UNSAFE ...when used intravenously in large amounts. Doses greater than 945 mg/m2 have been reported to cause nephrotoxicity (9564,16418).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Thyme has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when thyme is used orally and appropriately in supplemental amounts. Orally, thyme, in combination with other herbs, has been used safely for up to 23 days (13557,49219,49223,78133). ...when diluted thyme oil is used topically, short-term. Diluted thyme oil has been used with apparent safety for up to 7 months (5177). There is insufficient reliable information available about the safety of thyme oil when used orally or when inhaled.
CHILDREN: LIKELY SAFE
when used in amounts commonly found in foods.
Thyme has Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY SAFE
when thyme is used orally in medicinal amounts in combination with English ivy.
Thyme has been used with apparent safety in combination with English ivy for up to 10 days (78181).
There is insufficient reliable information available about the safety of thyme oil when used orally or topically in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods.
Thyme has Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of thyme when used in medicinal amounts during pregnancy and breast-feeding; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Immune Respiratory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Bromelain may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
There is one case report of a patient experiencing minor bruising while taking bromelain with naproxen (14806). Bromelain is thought to have antiplatelet activity (10639,14806,18285,18286,37234). Whether this interaction is of concern with topical bromelain is unclear. Interference with coagulation of burn wounds has been reported in a patient receiving bromelain-based enzymatic debridement. However, observational research has found that topical bromelain debridement is not associated with increases or decreases in laboratory markers of coagulation when compared with surgical debridement (110547).
|
Theoretically, bromelain might increase levels of tetracycline antibiotics.
Laboratory research suggests that bromelain might increase the absorption of tetracycline antibiotics. However, a study in healthy adults reported no difference in tetracycline plasma levels when a 500 mg dose was taken with or without bromelain 80 mg (14296).
|
Theoretically, English ivy might increase the levels of drugs metabolized by CYP2C19.
In vitro research shows that English ivy inhibits CYP2C19 enzymes (96682). So far, this interaction has not been reported in humans.
|
Theoretically, English ivy might increase the levels of drugs metabolized by CYP2C8.
In vitro research shows that English ivy inhibits CYP2C8 enzymes (96682). So far, this interaction has not been reported in humans.
|
Theoretically, English ivy might increase the levels of drugs metabolized by CYP2D6.
In vitro research shows that English ivy inhibits CYP2D6 enzymes (96682). So far, this interaction has not been reported in humans.
|
Theoretically, inhaling eucalyptol may reduce the effectiveness of amphetamines.
Animal research suggests that inhaling eucalyptol may reduce the levels of amphetamines in the blood (48987).
|
Theoretically, eucalyptus leaf might increase the risk of hypoglycemia.
Animal research suggests that eucalyptus leaf might have hypoglycemic activity, and might have additive effects when used with antidiabetes drugs (12871).
|
Theoretically, eucalyptus might increase the levels of CYP1A2 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP1A2, although this has not been reported in humans (12479).
|
Theoretically, eucalyptus might increase the levels of CYP2C19 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP2C19, although this has not been reported in humans (12479).
|
Theoretically, eucalyptus might increase the levels of CYP2C9 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP2C9, although this has not been reported in humans (12479).
|
Theoretically, eucalyptus might increase the levels of CYP3A4 substrates.
In vitro research suggests that eucalyptus oil might inhibit CYP3A4, although this has not been reported in humans (12479).
|
Theoretically, inhaling eucalyptol might reduce the effectiveness of pentobarbital.
Animal research suggests that inhaling eucalyptol reduces the level of pentobarbital that reaches the brain (48987).
|
Theoretically, oregano might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, oregano might increase the risk for hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, concomitant use of quercetin and antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research suggests that a combination of quercetin, myricetin, and chlorogenic acid reduce levels of fasting glucose in patients with type 2 diabetes, including those already taking antidiabetes agents (96779). The effect of quercetin alone is unknown. |
Theoretically, taking quercetin with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, concomitant use might increase the levels and adverse effects of cyclosporine.
A small study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine, possibly due to inhibition of p-glycoprotein or cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporin (16434). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C8 substrates.
|
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C9 substrates.
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac, a CYP2C9 substrate, increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5% (97931). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar), a substrate of CYP2C9 (100968). Furthermore, laboratory research shows that quercetin inhibits CYP2C9 (15549,16433). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2D6 substrates.
|
Theoretically, concomitant use might alter the effects and adverse effects of CYP3A4 substrates.
A small clinical study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine (Neoral, Sandimmune), a substrate of CYP3A4 (16434). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) and quetiapine (Seroquel), substrates of CYP3A4 (100968,104228). Other laboratory research also shows that quercetin inhibits CYP3A4 (15549,16433,16435). However, one clinical study shows that quercetin can increase the metabolism of midazolam, a substrate of CYP3A4, and decrease serum concentrations of midazolam by about 24% in some healthy individuals, suggesting possible induction of CYP3A4 (91573).
|
Theoretically, concomitant use might increase the levels and adverse effects of diclofenac.
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5%. This is thought to be due to inhibition of CYP2C9 by quercetin (97931). |
Theoretically, concomitant use might increase the effects and adverse effects of losartan and decrease the effects of its active metabolite.
Animal research shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) while decreasing plasma levels of losartan's active metabolite. This metabolite, which is around 10-fold more potent than losartan, is the result of cytochrome P450 (CYP) 2C9- and CYP3A4-mediated transformation of losartan. Additionally, in vitro research shows that quercetin may inhibit P-glycoprotein-mediated efflux of losartan from the intestines, resulting in increased absorption of losartan (100968). These results suggest that concomitant use of quercetin and losartan might increase systemic exposure to losartan while also decreasing plasma concentrations of losartan's active and more potent metabolite. |
Theoretically, concomitant use might decrease the levels and effects of midazolam.
A small clinical study in healthy volunteers shows that quercetin can increase the metabolism of midazolam, with a decrease in AUC of about 24% (91573). |
Theoretically, quercetin might increase the effects and adverse effects of mitoxantrone.
In vitro research shows that quercetin increases the intracellular accumulation and cytotoxicity of mitoxantrone, possibly through inhibition of breast cancer resistance protein (BCRP), of which mitoxantrone is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of OAT1 substrates.
In vitro research shows that quercetin is a strong non-competitive inhibitor of OAT1, with half-maximal inhibitory concentration (IC50) values less than 10 mcM (104454). So far, this interaction has not been reported in humans. |
Theoretically, concomitant use might increase the effects and adverse effects of OAT3 substrates.
|
Theoretically, concomitant use might increase the effects and adverse effects of OATP substrates.
In vitro evidence shows that quercetin can inhibit organic anion-transporting peptide (OATP) 1B1-mediated uptake of estrone-3-sulfate and pravastatin (91581). Furthermore, clinical research in healthy males shows that intake of quercetin along with pravastatin increases the AUC of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581). |
Theoretically, concomitant use might alter the effects and adverse effects of P-glycoprotein substrates.
There is preliminary evidence that quercetin inhibits the gastrointestinal P-glycoprotein efflux pump, which might increase the bioavailability and serum levels of drugs transported by the pump (16433,16434,16435,100968,104228). A small study in healthy volunteers reported that pretreatment with quercetin increased bioavailability and plasma levels after a single dose of cyclosporine (Neoral, Sandimmune) (16434). Also, two small studies have shown that quercetin might decrease the absorption of talinolol, a substrate transported by the gastrointestinal P-glycoprotein efflux pump (91579,91580). However, in another small study, several days of quercetin treatment did not significantly affect the pharmacokinetics of saquinavir (Invirase) (16433). The reason for these discrepancies is not entirely clear (91580). Until more is known, use quercetin cautiously in combination with P-glycoprotein substrates. |
Theoretically, concomitant use might increase the effects and adverse effects of pravastatin.
In vitro evidence shows that quercetin can inhibit OATP 1B1-mediated uptake of pravastatin (91581). Also, preliminary clinical research in healthy males shows that intake of quercetin along with pravastatin increases the maximum concentration of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581).
|
Theoretically, quercetin might increase the effects and adverse effects of prazosin.
In vitro research shows that quercetin inhibits the transcellular efflux of prazosin, possibly through inhibition of breast cancer resistance protein (BCRP), of which prazosin is a substrate. BCRP is an ATP-binding cassette efflux transporter in the intestines, kidneys, and liver (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of quetiapine.
Animal research shows that pretreatment with quercetin can increase plasma levels of quetiapine and prolong its clearance, possibly due to inhibition of cytochrome P450 3A4 (CYP3A4) by quercetin. Additionally, the brain-to-plasma ratio of quetiapine concentrations increased, possibly due to inhibition of P-glycoprotein at the blood-brain barrier (104228). This interaction has not been reported in humans.
|
Theoretically, concomitant use might inhibit the effects of quinolone antibiotics.
In vitro, quercetin binds to the DNA gyrase site on bacteria (481), which may interfere with the activity of quinolone antibiotics.
|
Theoretically, quercetin might increase the effects and adverse effects of sulfasalazine.
Animal research shows that quercetin increases the maximum serum concentration (Cmax) and area under the curve (AUC) of sulfasalazine, possibly through inhibition of breast cancer resistance protein (BCRP), of which sulfasalazine is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, quercetin may increase the risk of bleeding if used with warfarin.
Animal and in vitro studies show that quercetin might increase serum levels of warfarin (17213,109619). Quercetin and warfarin have the same human serum albumin (HSA) binding site, and in vitro research shows that quercetin has stronger affinity for the HSA binding site and can theoretically displace warfarin, causing higher serum levels of warfarin (17213). Animal research shows that taking quercetin for 2 weeks before initiating warfarin increases the maximum serum level of warfarin by 30%, the half-life by 10%, and the overall exposure by 63% when compared with control. Concomitant administration of quercetin and warfarin, without quercetin pre-treatment, also increased these measures, but to a lesser degree. Researchers theorize that inhibition of CYP3A4 by quercetin may explain these effects (109619). So far, this interaction has not been reported in humans.
|
Theoretically, concurrent use of anticholinergic drugs and thyme essential oil might reduce the effects of anticholinergic drugs.
In vitro evidence suggests that thyme essential oil and specific essential oil constituents like thymohydroquinone and carvacrol can inhibit acetylcholinesterase (AChE) (78155). However, this effect has not been observed in humans.
|
Theoretically, thyme leaf extract might have additive effects with anticoagulant or antiplatelet drugs.
|
Theoretically, concurrent use of cholinergic drugs and thyme essential oil might cause additive cholinergic effects.
In vitro evidence suggests that thyme essential oil and specific essential oil constituents like thymohydroquinone and carvacrol can inhibit acetylcholinesterase (AChE) (78155). However, this effect has not been observed in humans.
|
Theoretically, thyme might competitively inhibit the effects of estrogen replacement therapy.
In vitro research shows that thyme has estrogen receptor-binding activity and phytoestrogen content (3701). However, this effect has not been observed in humans.
|
Below is general information about the adverse effects of the known ingredients contained in the product Immune Respiratory. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bromelain seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, flatulence, gastric upset, headache.
Topically: Pruritus, urticaria.
Dermatologic
...Topically, bromelain may cause dermal allergic reactions including urticaria, pruritus, and skin swelling (9184).
Redness, swelling, burning, pain at the application site, and cellulitis have also been reported rarely (108148,113513). In one case, a fixed drug eruption with pruritis near the groin was reported in a 33-year-old male taking bromelain 50 mg orally daily for 10 days. After discontinuation of bromelain and treatment with topical corticosteroid, the lesion resolved. Upon re-challenge with bromelain, the lesion reappeared in the same area (103300).
In another case report, a 61-year-old male with a history of chronic lower leg ulceration secondary to chronic venous hypertension and recurrent deep vein thrombosis on rivaroxaban presented with a deep-dermal burn on his lower calf. Bromelain-based topical enzymatic debridement agent Nexobrid 2 grams was applied to the burn site. Thirty minutes later, the patient experienced two instances of hemorrhage at the site of debridement. The patient was stabilized and treated with fluids, packed red cells, and tranexamic acid, and then the Nexobrid was removed (111656). Caution should be used in patients with underlying coagulopathies.
Gastrointestinal ...Orally, bromelain may cause gastrointestinal disturbances, including diarrhea, nausea, vomiting, flatulence, and abdominal pain (9184,18274,18282,96216,113513).
Immunologic
...Immunoglobulin E (IgE)-mediated allergic reactions to bromelain may occur (9184).
If inhaled, bromelain may cause sensitization and allergic reactions such as asthma (37199,37215,37233). In case reports of occupational inhalation of bromelain, additional allergic symptoms included difficulty swallowing, throat itching, eye irritation, and rhinitis (37214).
General
...Orally and topically, English ivy leaf extract seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, nausea, skin irritation, vomiting.
Topically: Allergic reactions, contact dermatitis.
Dermatologic
...Orally, English ivy and fresh English ivy leaves can cause skin irritation (7,29903).
Topically, fresh English ivy leaves can cause contact dermatitis and rash, with frequent exposure increasing the risk of sensitization (29910,29912,29913,29914,91301,96620,96636,96681). Occupational airborne exposure to English ivy can also cause contact dermatitis (96600).
Gastrointestinal ...Orally, English ivy can cause abdominal pain, diarrhea, nausea, and vomiting (29903,106055). The saponin constituents of English ivy can produce an acrid and/or bitter taste (7).
General
...Orally, diluted eucalyptus oil is generally well tolerated, but the undiluted oil can cause toxicity.
Most Common Adverse Effects:
Orally: Diarrhea, nausea, vomiting.
Topically: Burning, itching, redness, stinging.
Serious Adverse Effects (Rare):
Orally: Signs of toxicity can occur with the undiluted oil at doses as low as 1 mL and include central nervous system depression, shallow respiration, rapid pulse, apnea, coma, and death.
Topically: Prolonged exposure or large amounts of eucalyptus oil can cause agitation, ataxia, drowsiness, muscle weakness, seizures, and slurred speech. The risk of toxicity may be greater in children.
Inhalation (as aromatherapy): Seizures.
Cardiovascular ...Orally, one case of premature ventricular contractions has been reported in a previously healthy 29-year-old male who ingested approximately one ounce of eucalyptus oil (48983).
Dermatologic ...Topically, eucalyptus pollen, leaves, oil, and the constituent eucalyptol can cause contact dermatitis in sensitive people (13303,48931,92856,92858,92859,98497). In some cases, symptoms respond to treatment with topical corticosteroids and tacrolimus (92856). In one case report, transient local redness, burning, and irritation was reported in a 4-year-old child who was bathed in water containing eucalyptus oil. The symptoms resolved within one hour of rinsing the skin with clear water (48983). In a clinical study, treatment with a combination of eucalyptus oil and lemon tea tree oil caused burning, redness, itching, or stinging in up to 20% of the patients. Stinging usually resolved within 10 minutes of application and redness within 30 minutes (19188,98492).
Gastrointestinal ...Orally, eucalyptus oil can cause nausea, vomiting, and diarrhea (48983,48993,48995). Abdominal pain has been reported in a trial of the eucalyptus constituent eucalyptol for inflammatory bowel disease (IBD) (48936).
Immunologic
...A case of IgE-mediated exacerbation of asthma and rhinitis symptoms has been reported in a patient who consumed eucalyptus.
Similar worsening of symptoms occurred when the patient inhaled eucalyptus pollen (48957).
Occupational exposure to eucalyptus may cause allergic dermatitis (98497).
Neurologic/CNS
...Orally, eucalyptus oil can cause central nervous system depression, coma, and status epilepticus (12867,48946,48983).
Topically, orally, and by inhalation, eucalyptus oil has been associated with seizures. A systematic review describes the characteristics of 49 children and 61 adults with seizures associated with various routes of administration. Patients with no seizure history were classified as a eucalyptus oil-induced seizure (EOIS), while patients with a history of seizure or susceptibility to seizure were defined as a eucalyptus oil-provoked seizure (EOPS). In EOIS cases, topical use was reported in 74%, inhalation in 22.5%, and ingestion in 3.5%; for EOPS cases, topical use was reported in 79%, inhalation in 16%, and ingestion in 5%. Generalized tonic-clonic seizures are the most prominent type of seizure in EOIS cases (96%). Among EOPS patients, 37% had focal onset motor seizures with impaired awareness, 24% had focal onset aware motor seizures, 13% had focal to bilateral tonic-clonic seizures, and 26% had generalized onset tonic-clonic seizures (107494). One prospective observational study that was included in this systematic review provided additional details on eucalyptus-induced seizures. This study included 18 reports of EOIS and 28 reports of EOPS in adults and children after topical or inhaled use of eucalyptus oil, either alone or in combination with camphor. The time to seizure onset was 0.5-48 hours after topical application, 2-30 minutes after inhalation, and 0.5-6 hours after ingestion. (105028).
One prospective observational study and one case series have described 20 case reports of seizures occurring in children after ingestion of eucalyptus oil. Most of these seizures are generalized tonic-clonic in nature, occur 15-30 minutes after exposure, and do not reoccur following the discontinuation of eucalyptus oil. Seizures have been reported with both overdoses and therapeutic doses (107493,107495) and include cases of both EOIS and EOPS (107495). Additionally, children appear more likely to require intensive care and mechanical ventilation when compared with adult cases (107494).
A case of fever and headache has been reported in a patient who routinely applied a teaspoon of gel containing eucalyptus extract in his throat or nose to treat sore throat or rhinitis (48946).
General ...Information regarding the adverse effects of mullein is limited. A thorough evaluation of safety outcomes has not been conducted.
Dermatologic ...Two case reports have described dermatitis, with positive patch tests, after topical exposure to the whole plant, or by occupational inhalation of plant dust (92839,97316). In the case of topical exposure, the patient also had positive patch tests to other plants.
General
...Orally, oregano is well tolerated when used in amounts typically found in foods.
There is currently a limited amount of information available about the safety of oregano when used in larger amounts as medicine.
Most Common Adverse Effects:
Orally: Gastrointestinal upset.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Systemic allergic reactions, including anaphylaxis, in sensitive individuals.
Dermatologic ...Oregano has been reported to cause allergic contact dermatitis (46902). Topically, oregano oil in concentrations of greater than 1% has been reported to cause irritation when applied to mucous membranes (67348,88188).
Gastrointestinal ...Orally, large amounts of oregano can cause gastrointestinal upset. Concentrated, non-emulsified oil of oregano can cause localized irritation of the gastrointestinal tract (6878).
Immunologic ...Systemic allergic reactions have been reported with oregano. A 45-year-old male developed pruritus, respiratory difficulty, hypotension, swelling of the lips and tongue, and facial edema after ingesting pizza seasoned with oregano. He had 2 similar episodes after ingesting foods seasoned with thyme, another member of the Lamiaceae family. He did not react to similar foods without the seasoning, and he had positive skin tests to plants of the Lamiaceae family (3705).
General ...Orally and intravenously, quercetin seems to be well tolerated in appropriate doses. Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Intravenous administration of quercetin is associated with nausea and vomiting (9564).
Neurologic/CNS ...Orally, quercetin may cause headache and tingling of the extremities (481,111500). Intravenously, quercetin may cause pain at the injection site. Injection pain can be minimized by premedicating patients with 10 mg of morphine and administering amounts greater than 945 mg/m2 over 5 minutes (9564). In addition, intravenous administration of quercetin is associated with flushing and sweating (9564).
Pulmonary/Respiratory ...Intravenous administration of quercetin at doses as high as 2000 mg/m2 is associated with dyspnea that may persist for up to 5 minutes (9564).
Renal ...Intravenously, nephrotoxicity has been reported with quercetin in amounts greater than 945 mg/m2 (9563,9564,70304).
General
...Orally, thyme is well tolerated when used in food and seems to be well tolerated when used medicinally.
Topically, thyme seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Allergic reactions, diarrhea, dizziness, headache, heartburn, nausea, or vomiting.
Topically: Contact dermatitis and skin irritation.
Dermatologic ...Topically, thyme, thyme oil, or the constituent thymol can cause contact dermatitis and skin irritation (13463,78252,78362,78384,77982,78154,78310,78313,78384). In one study of 100 patients with contact allergies, 5% were attributed to thyme oil as an allergen contained in wound dressings (78362). Toothpastes containing thymol have been associated with cheilitis and glossitis (13463).
Gastrointestinal
...Orally, thyme and thyme oil may cause heartburn, nausea, vomiting, stomach upset, or diarrhea (13557,94033).
In a clinical study, two patients using extracts of thyme herb and ivy leaves experienced temporary stomach ache and mild nausea (78181).
Intravaginally, cream containing thyme and garlic has been associated with reports of nausea and vomiting in one clinical study (88387). It is not clear if these adverse effects were associated with thyme, garlic, or the combination.
Genitourinary ...Intravaginally, cream containing thyme and garlic has been associated with reports of vaginal dryness and vaginal irritation in one clinical study (88387). It is not clear if these adverse effects were associated with thyme, garlic, or the combination.
Immunologic ...Orally, thyme can cause allergic reactions; however, this is uncommon (13463). Allergic reactions to thyme might be more common in people who are also allergic to oregano and other Lamiaceae species (3808).
Neurologic/CNS ...Orally, thyme may case headache or dizziness (94033).
Pulmonary/Respiratory ...By inhalation, occupational exposure to thyme dust can cause acute airway obstruction (783,13463,13464,77982,78098).