Each capsule contains: Betaine HCl (beet) 100 mg • Ox Bile extract 100 mg • Pancreatin (NF 10X) 70 mg • Papain (2.5 mil FCC PU) 50 mg • Lipase (674.6 FCC LU) 34 mg • Bromelain (512,000 FCC PU) 20 mg • CereCalase (200 MU) 10 mg • Amylase (521 DU) 5.2 mg • Ginger 50 mg • Peppermint 50 mg • Pepsin (1:10,000) 4 mg. Other Ingredients: 100% Kosher Vegetable Capsules, Rice Bran, Purified Water.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Power-Zymes. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Proteolytic enzymes represent a wide group of enzymes that are used alone or in combination. See specific monographs for effectiveness information.
Below is general information about the safety of the known ingredients contained in the product Power-Zymes. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when taken orally as a single dose of up to 1500 mg (93328,93329). There is insufficient reliable information available about the safety of betaine hydrochloride when used in multiple doses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Doses up to 240 mg daily have been used safely for up to a year (6252,6253,10622,11457,18281,18284,91104,91105,91106,91111)(96449,103298). Higher doses up to 3200 mg daily have been used safely, short-term (18283,110546). ...when used topically and appropriately. Bromelain has been used safely as a debriding agent for up to 4 hours (18275,91113,103297,108148,108149,113899). Additionally, a retrospective cohort study in critically ill patients with severe burns suggests that use of bromelain as a debriding agent for up to 4 hours is not associated with a greater risk of bacteremia (113899).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
There is insufficient reliable information available about the safety of lipase.
CHILDREN: POSSIBLY UNSAFE
when recombinant human bile salt-stimulated lipase (rhBSSL) is used orally by premature infants.
Adding rhBSSL to infant formula or pasteurized breast milk increases the risk for serious gastrointestinal adverse effects in premature infants (101940).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when prescription pancreatic enzyme products are used orally and appropriately under the guidance of a healthcare professional (98667,98674,98676,98677,99115,99116,99118,99120,99122,99124)(99125,99126,99127). Prescription pancreatic enzyme products are typically initiated at a dose of 500-1000 lipase units/kg body weight per meal to a maximum of 2500 lipase units/kg body weight per meal or 4000 lipase units/gram of fat daily. Doses higher than 2500 lipase units/kg body weight per meal are prescribed only if medically necessary (99130).
POSSIBLY UNSAFE ...when prescription pancreatic enzyme products are used orally at doses over 2500 lipase units/kg body weight per meal or 10,000 lipase units/kg body weight daily. Higher doses, especially those greater than 6000 lipase units/kg body weight per meal, have been associated with fibrosing colonopathy (99130). There is insufficient reliable information available about the safety of supplemental forms of pancreatic enzyme products.
CHILDREN: LIKELY SAFE
when prescription pancreatic enzyme products are used orally and appropriately under the guidance of a healthcare professional (99118,99119,99120,99121,99122,99124,99125,99126).
Prescription pancreatic enzyme products are usually initiated at a dose of 500-1000 lipase units/kg body weight per meal to a maximum of 2500 lipase units/kg body weight per meal or 4000 lipase units/gram fat daily. Doses higher than 2500 lipase units/kg body weight per meal are prescribed only if medically necessary (99130).
CHILDREN: POSSIBLY UNSAFE
when prescription pancreatic enzyme products are used orally at doses over 2500 lipase units/kg body weight per meal or 10,000 lipase units/kg body weight daily.
Higher doses, especially those greater than 6000 lipase units/kg body weight per meal, have been associated with fibrosing colonopathy (99130). There is insufficient reliable information available about the safety of supplemental forms of pancreatic enzyme products.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using unless essential for replacement therapy (15).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Papain has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short-term. Papain has been used in combination with other proteolytic enzymes at a dose of up to 1200 mg daily for up to 9 weeks (964,965,968,67831,67834). ...when used topically as a diluted solution in appropriate doses for up to 20 minutes (67835,67843,67845).
POSSIBLY UNSAFE ...when used orally in large amounts. In excessive doses, papain can cause significant side effects including esophageal perforation (6). ...when raw papain is used topically. Raw papain or papaya latex is a severe irritant and vesicant (6).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is some concern that crude papain is teratogenic and embryotoxic (6).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when peppermint oil is used orally, topically, or rectally in medicinal doses. Peppermint oil has been safely used in multiple clinical trials (3801,3804,6190,6740,6741,10075,12009,13413,14467,17681)(17682,68522,96344,96360,96361,96362,96363,96364,96365,99493).
POSSIBLY SAFE ...when peppermint leaf is used orally and appropriately, short-term. There is some clinical research showing that peppermint leaf can be used safely for up to 8 weeks (12724,13413). The long-term safety of peppermint leaf in medicinal doses is unknown. ...when peppermint oil is used by inhalation as aromatherapy (7107). There is insufficient reliable information available about the safety of using intranasal peppermint oil.
CHILDREN: POSSIBLY SAFE
when used orally for medicinal purposes.
Enteric-coated peppermint oil capsules have been used with apparent safety under medical supervision in children 8 years of age and older (4469).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (96361).
There is insufficient information available about the safety of using peppermint in medicinal amounts during pregnancy or lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Various proteolytic enzymes have been safely used orally in clinical research (716,964,965,968,969,6252,6253,10622,11457,18281,18284) (91104,91105,91106,91111,96449). Side effects are typically mild to moderate and most often include gastrointestinal effects. See specific monographs for more detailed information related to the safety of individual proteolytic enzymes. ...when used topically and appropriately. Various proteolytic enzymes have been safely used topically in clinical research (67835,67843,67845,91113). Some proteolytic enzymes might cause allergic reactions when used topically. See specific monographs for more detailed information related to the safety of individual proteolytic enzymes.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Power-Zymes. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Betaine hydrochloride increases stomach acidity and could decrease the effects of antacids.
Details
|
Betaine hydrochloride increases stomach acidity and could decrease the effects of H2-blockers.
Details
|
Betaine hydrochloride increases stomach acidity and could decrease the effects of PPIs.
Details
|
Bromelain may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
There is one case report of a patient experiencing minor bruising while taking bromelain with naproxen (14806). Bromelain is thought to have antiplatelet activity (10639,14806,18285,18286,37234). Whether this interaction is of concern with topical bromelain is unclear. Interference with coagulation of burn wounds has been reported in a patient receiving bromelain-based enzymatic debridement. However, observational research has found that topical bromelain debridement is not associated with increases or decreases in laboratory markers of coagulation when compared with surgical debridement (110547).
|
Theoretically, bromelain might increase levels of tetracycline antibiotics.
Details
Laboratory research suggests that bromelain might increase the absorption of tetracycline antibiotics. However, a study in healthy adults reported no difference in tetracycline plasma levels when a 500 mg dose was taken with or without bromelain 80 mg (14296).
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Details
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
Details
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
Details
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
Details
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
Details
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
Details
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Details
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
Details
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Details
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Details
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, pancreatic enzyme products may reduce the effects of acarbose.
Details
The digestive enzymes present in pancreatic enzyme products may break down acarbose, reducing its effects (9).
|
Theoretically, papain might increase the effects and side effects of warfarin.
Details
In one case report, a patient previously stable on warfarin was found to have an international normalization ratio (INR) of 7.4, which was attributed to ingestion of a supplement containing papain from papaya extract (613).
|
Theoretically, peppermint oil might increase the levels and adverse effects of cyclosporine.
Details
In animal research, peppermint oil inhibits cyclosporine metabolism and increases cyclosporine levels. Inhibition of cytochrome P450 3A4 (CYP3A4) may be partially responsible for this interaction (11784). An interaction between peppermint oil and cyclosporine has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP1A2 substrates.
Details
In vitro and animal research shows that peppermint oil and peppermint leaf inhibit CYP1A2 (12479,12734). However, in clinical research, peppermint tea did not significantly affect the metabolism of caffeine, a CYP1A2 substrate. It is possible that the 6-day duration of treatment may have been too short to identify a difference (96359).
|
Theoretically, peppermint might increase the levels of CYP2C19 substrates.
Details
In vitro research shows that peppermint oil inhibits CYP2C19 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that peppermint oil inhibits CYP2C9 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP3A4 substrates.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product Power-Zymes. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, betaine hydrochloride is generally well tolerated when taken as a single dose.
Gastrointestinal ...Theoretically, the hydrochloric acid produced from betaine hydrochloride might irritate gastric or duodenal ulcers or impede ulcer healing. It might also cause heartburn.
General
...Orally, bromelain seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, flatulence, gastric upset, headache.
Topically: Pruritus, urticaria.
Dermatologic
...Topically, bromelain may cause dermal allergic reactions including urticaria, pruritus, and skin swelling (9184).
Redness, swelling, burning, pain at the application site, and cellulitis have also been reported rarely (108148,113513). In one case, a fixed drug eruption with pruritis near the groin was reported in a 33-year-old male taking bromelain 50 mg orally daily for 10 days. After discontinuation of bromelain and treatment with topical corticosteroid, the lesion resolved. Upon re-challenge with bromelain, the lesion reappeared in the same area (103300).
In another case report, a 61-year-old male with a history of chronic lower leg ulceration secondary to chronic venous hypertension and recurrent deep vein thrombosis on rivaroxaban presented with a deep-dermal burn on his lower calf. Bromelain-based topical enzymatic debridement agent Nexobrid 2 grams was applied to the burn site. Thirty minutes later, the patient experienced two instances of hemorrhage at the site of debridement. The patient was stabilized and treated with fluids, packed red cells, and tranexamic acid, and then the Nexobrid was removed (111656). Caution should be used in patients with underlying coagulopathies.
Gastrointestinal ...Orally, bromelain may cause gastrointestinal disturbances, including diarrhea, nausea, vomiting, flatulence, and abdominal pain (9184,18274,18282,96216,113513).
Immunologic
...Immunoglobulin E (IgE)-mediated allergic reactions to bromelain may occur (9184).
If inhaled, bromelain may cause sensitization and allergic reactions such as asthma (37199,37215,37233). In case reports of occupational inhalation of bromelain, additional allergic symptoms included difficulty swallowing, throat itching, eye irritation, and rhinitis (37214).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...No adverse effects have been reported in adults.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal adverse effects, such as necrotizing enterocolitis, when recombinant human bile salt-stimulated lipase is used in premature infants.
Gastrointestinal ...Orally, when added to the formula or pasteurized breast milk consumed by premature infants, recombinant human bile salt-stimulated lipase (rhBSSL) can cause gastrointestinal adverse effects, including abdominal distension, flatulence, constipation, colic, abdominal pain, gastroenteritis, vomiting, regurgitation, and rectal bleeding (101940). Premature infants receiving rhBSSL also had a slightly higher rate of necrotizing enterocolitis (NEC) when compared with those receiving placebo. After review by a panel of experts, it was determined that the rate of confirmed or suspected NEC in infants consuming rhBSSL was 3.3%, compared with 0.5% in those receiving placebo. Although this rate of NEC is lower than the historical rate of occurrence in premature infants (11%), a possible increased risk for NEC cannot be ruled out (101940).
General
...Orally, prescription pancreatic enzyme products are generally well tolerated when used at prescribed doses in adults and children.
Most Common Adverse Effects:
Orally: Prescription pancreatic enzyme products can cause abdominal pain, constipation, diarrhea, dry mouth, flatulence, irritation of the skin around the mouth and anus, nausea, steatorrhea, and vomiting.
Topically: Pancreatic enzyme product powder is irritating to the skin, eyes, mucus membranes, and respiratory tract. Pancreatic enzyme products that are held in the mouth prior to swallowing can cause irritation of the mucosa, including ulceration and stomatitis.
Serious Adverse Effects (Rare):
Orally: Prescription pancreatic enzyme products can worsen glucose control. Extremely high doses have been associated with fibrosing colonopathy and high uric acid levels in blood and urine.
Topically: Inhalation of dust containing pancreatic enzyme products has been associated with asthma, bronchospasm, and pulmonary hypersensitivity reactions.
Dermatologic
...Orally, rash or skin conditions have been reported rarely in individuals taking prescription pancreatic enzyme products (67709,98667).
A pruritic rash occurred in one patient taking a prescription pancreatic enzyme product in one clinical trial; this event was considered by the investigators to be possibly related to treatment (98667). Erythema also occurred in an 84-year-old patient who had taken a digestive enzyme supplement containing pancreatic enzymes and other enzymes (67709). In a case report, taking a supplemental form of pancreatic enzymes also containing hemicellulose and dried ox bile extract powder (Festal, Handok Inc) was thought to be the cause of an acute generalized exanthematous pustulosis (AGEP). The patient required an antihistamine and an oral and topical corticosteroid. Since this product contained more than one ingredient, the role of the pancreatic enzymes in this specific adverse event is unclear (98675).
Topically, exposure to pancreatic enzyme product powder is irritating to the skin. Hypersensitivity reactions such as skin rash have been reported (15).
Endocrine ...Orally, prescription pancreatic enzyme products may cause hypoglycemia or hyperglycemia in some patients (67622,98676,98677). In a double-blind trial of a prescription pancreatic enzyme product compared with placebo in patients with unresectable pancreatic cancer and associated pancreatic duct obstruction, one patient developed diabetes during the study period (67708).
Gastrointestinal
...Orally, prescription pancreatic enzyme products can cause abdominal pain, constipation, diarrhea, dry mouth, irritation of the skin around the mouth and anus, flatulence, nausea, steatorrhea, and vomiting.
However, these symptoms can be controlled by following prescription dosing recommendations (67617,67618,67645,67648,67651,67653,67657,67666,67714,98667)(98676,99115,99117,99123,99130). Doses of higher than 2500 lipase units/kg body weight per meal are not recommended unless medically necessary in order to prevent serious side effects, including fibrosing colonopathy and colonic strictures. These side effects are associated with the higher doses of lipase in prescription pancreatic enzyme products (2382,67677,67678,67679,67680,67682,67689,67690,67696,67701,99130).
Topically, pancreatic enzyme products that are held in the mouth prior to swallowing can cause irritation of the mucosa, including ulceration and stomatitis (15).
Hematologic ...Orally, severe neutropenia has been reported with a pancreatic enzyme product. In one case report, a 61-year-old patient taking a prescription pancreatic enzyme product for chronic pancreatitis developed agranulocytosis that persisted despite a trial of filgrastim. Upon discontinuation of the pancreatic enzyme product, marked improvement in neutropenia occurred within 7 days, with full resolution within 6 weeks (107411).
Neurologic/CNS ...Orally, headache and dizziness have been reported rarely in individuals taking prescription pancreatic enzyme products (67618,98667,99120).
Ocular/Otic ...Topically, exposure to pancreatic enzyme product powder is irritating to the eyes. Hypersensitivity reactions such as watery eyes have been reported (15).
Pulmonary/Respiratory ...Topically, exposure to pancreatic enzyme product powder is irritating to the respiratory tract. Hypersensitivity reactions such as sneezing have been reported (15). Inhalation of dust containing pancreatic enzyme products has been associated with allergic rhinitis, asthma, bronchospasm, and pulmonary hypersensitivity reactions (11768,11769,67641).
Renal ...Orally, extremely high doses of pancreatic enzyme products containing more than 10,000 lipase units/kg body weight daily have been associated with high uric acid levels in blood and urine (67673,67693,67705). Rarely, kidney pain has been reported (98667).
General
...Orally and topically, papain seems to be well tolerated when used short-term at appropriate doses.
Taking high oral doses may be unsafe.
Most Common Adverse Effects:
Orally: Allergic reactions in sensitive individuals.
Topically: Urticaria and pruritus in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Esophageal perforation and severe gastritis with high doses.
Dermatologic ...Topically, papain can cause itching (966). Urticarial reactions and itching have been reported in people occupationally exposed to papain, with papain confirmed as the causative agent by skin prick tests or radioallergosorbent tests (RAST) (95533,95534). In a randomized controlled trial assessing the effects of papain, trypsin, and chymotrypsin on adverse effects from radiotherapy, moderate to severe epitheliolysis was more frequent in the enzyme-treated group than the placebo group (67834). It is unclear if this adverse effect is due to papain, other enzymes, or the combination.
Gastrointestinal ...Orally, papain has been associated with diarrhea. In a randomized controlled trial assessing the effects of papain, trypsin, and chymotrypsin on adverse effects from radiotherapy, moderate to severe diarrhea was more frequent in the enzyme-treated group than the placebo group (67834). However, it is unclear if this adverse effect is due to papain, other enzymes, or the combination. Papain has also been associated with gastric ulcers and esophageal perforation in case reports of phytobezoars treated with papain (67848). In general, large amounts of papain can cause esophageal perforation (6). Ingestion of papaya latex (raw papain) can cause severe gastritis.
Genitourinary ...Orally, papain has been associated with hypernatremia in case reports of phytobezoars treated with papain (67848).
Immunologic ...Orally, papain may cause allergic reactions, including itchy watery eyes, runny nose, sneezing, abdominal cramps, sweating, and diarrhea, in individuals sensitive to papain (6,967). Occupational exposure to airborne papain dust may also cause respiratory allergic reactions (95532,95533,95534,95535,95536).
Pulmonary/Respiratory ...Occupational exposure to airborne papain dust may cause respiratory allergic reactions. Symptoms include rhinitis, sneezing, conjunctivitis, dyspnea, wheezing, cough, and asthma. In most cases, papain is confirmed as the causative agent by skin prick tests, radioallergosorbent tests (RAST), or detection of papain-specific immunoglobulin E (IgE) and IgG (95532,95533,95534,95535,95536).
General
...Orally, topically, or rectally, peppermint oil is generally well tolerated.
Inhaled,
peppermint oil seems to be well tolerated. Intranasally, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted. Orally, peppermint leaf seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, anal burning, belching, diarrhea, dry mouth, heartburn, nausea, and vomiting.
Topically: Burning, dermatitis, irritation, and redness.
Dermatologic
...Topically, peppermint oil can cause skin irritation, burning, erythema, and contact dermatitis (3802,11781,31528,43338,68473,68457,68509,96361,96362).
Also, a case of severe mucosal injury has been reported for a patient who misused an undiluted over the counter mouthwash that contained peppermint and arnica oil in 70% alcohol (19106).
In large amounts, peppermint oil may cause chemical burns when used topically or orally. A case of multiple burns in the oral cavity and pharynx, along with edema of the lips, tongue, uvula, and soft palate, has been reported for a 49-year-old female who ingested 40 drops of pure peppermint oil. Following treatment with intravenous steroids and antibiotics, the patient's symptoms resolved over the course of 2 weeks (68432). Also, a case of chemical burns on the skin and skin necrosis has been reported for a 35-year-old male who spilled undiluted peppermint oil on a previous skin graft (68572). Oral peppermint oil has also been associated with burning mouth syndrome and chronic mouth ulceration in people with contact sensitivity to peppermint (6743). Also, excessive consumption of mint candies containing peppermint oil has been linked to cases of stomatitis (13114).
Gastrointestinal ...Orally, peppermint oil can cause heartburn, nausea and vomiting, anal or perianal burning, abdominal pain, belching, dry mouth, diarrhea, and increased appetite (3803,6740,6741,6742,10075,11779,11789,17682,68497,68514)(68532,68544,96344,96360,102602,104219,107955). Enteric-coated capsules might help to reduce the incidence of heartburn (3802,4469,6740,11777). However, in one clinical study, a specific enteric-coated formulation of peppermint oil (Pepogest; Nature's Way) taken as 180 mg three times daily was associated with a higher rate of adverse effects when compared with placebo (48% versus 31%, respectively). Specifically, of the patients consuming this product, 11% experienced belching and 26% experienced heartburn, compared to 2% and 12%, respectively, in the placebo group (107955). A meta-analysis of eight small clinical studies in patients with irritable bowel syndrome shows that taking enteric-coated formulations of peppermint oil increases the risk of gastroesophageal reflux symptoms by 67% when compared with a control group (109980). Enteric-coated capsules can also cause anal burning in people with reduced bowel transit time (11782,11789).
Genitourinary ...Orally, a sensitive urethra has been reported rarely (102602).
Hepatic ...One case of hepatocellular liver injury has been reported following the oral use of peppermint. Symptoms included elevated liver enzymes, fatigue, jaundice, dark urine, and signs of hypersensitivity. Details on the dosage and type of peppermint consumed were unavailable (96358).
Immunologic ...One case of IgE-mediated anaphylaxis, characterized by sudden onset of lip and tongue swelling, tightness of throat, and shortness of breath, has been reported in a 69-year-old male who consumed peppermint candy (89479). An allergic reaction after use of peppermint oil in combination with caraway oil has been reported in a patient with a history of bronchial asthma (96344). It is not clear if this reaction occurred in response to the peppermint or caraway components.
Neurologic/CNS ...Orally, headache has been reported rarely (102602).
Ocular/Otic ...Orally, peppermint has been reported to cause blurry vision (3803).
General
...Orally, proteolytic enzymes are generally well tolerated.
See specific monographs for detailed safety information related to individual proteolytic enzymes.
Most Common Adverse Effects:
Orally: Gastrointestinal upset.
Serious Adverse Effects (Rare):
Topically: Allergic reactions.
Gastrointestinal ...Orally, some patients taking proteolytic enzymes may have gastrointestinal complaints (101517).
Immunologic ...Proteolytic enzymes are commonly found in laundry detergents and pre-spotter products. Rarely, protease specific IgE positive tests possibly related to these products have occurred. Exposure may be airborne or topical (102705). In addition, in case reports, occupational exposure to the airborne proteolytic enzyme pepsin has resulted in allergic rhinoconjunctivitis or asthma (102706,102707).