Ingredients | Amount Per Infusion Bag |
---|---|
Proprietary Organic Blend
|
2.1 Gram(s) |
(Holy Basil)
|
|
(Ocimum sanctum )
(leaf)
(Krishna variety, & Rama variety)
(Holy Basil (Form: Krishna variety, & Rama variety) PlantPart: leaf Genus: Ocimum Species: sanctum )
|
|
(Ocimum gratissimum )
(leaf)
(Vana variety)
|
|
(leaf)
|
|
(bark)
|
|
(rhizome)
|
|
(seed)
|
|
(fruit)
|
|
(flower bud)
|
|
(seed)
|
|
organic Mace
(anil)
|
Below is general information about the effectiveness of the known ingredients contained in the product Tulsi Masala Chai. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Tulsi Masala Chai. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Basil has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used topically in medicinal amounts. Solutions containing up to 6% basil essential oil have been used with apparent safety for up to 12 weeks (103622). There is insufficient reliable information available about the safety of basil when inhaled as aromatherapy.
POSSIBLY UNSAFE ...when used orally in medicinal amounts. Both the above ground parts and the oil of basil contain estragole, which might be hepatocarcinogenic and mutagenic (2,8,12).
CHILDREN: LIKELY SAFE
when the above ground parts are used in amounts commonly found in foods.
CHILDREN: POSSIBLY UNSAFE
when used orally in medicinal amounts due to the estragole constituent (2,8).
PREGNANCY AND LACTATION: LIKELY SAFE
when the above ground parts are used in amounts commonly found in foods.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in larger amounts due to the estragole constituent of the essential oil.
Estragole might have mutagenic effects (2,12).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Black pepper has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when black pepper oil is applied topically. Black pepper oil is nonirritating to the skin and is generally well tolerated (11). ...when black pepper oil is inhaled through the nose or as a vapor through the mouth, short-term. Black pepper oil as a vapor or as an olfactory stimulant has been used with apparent safety in clinical studies for up to 3 days and 30 days, respectively (29159,29160,29161,90502). There is insufficient reliable information available about the safety of black pepper when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
CHILDREN: POSSIBLY UNSAFE
when used orally in large amounts.
Fatal cases of pepper aspiration have been reported in some patients (5619,5620). There is insufficient reliable information available about the safety of topical pepper oil when used in children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
PREGNANCY: LIKELY UNSAFE
when used orally in large amounts.
Black pepper might have abortifacient effects (11,19); contraindicated. There is insufficient reliable information available about the safety of topical pepper when used during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
There is insufficient reliable information available about the safety of black pepper when used in medicinal amounts during breast-feeding.
LIKELY SAFE ...when consumed orally in moderate amounts (1452,9222,9223,9224,9228,9233,9234,9235,9236,36376)(36426,36434,36436,36581). Black tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 4 cups of black tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806).
POSSIBLY UNSAFE ...when consumed orally long term or in high amounts. Black tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 6 cups of black tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated black tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as black tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when consumed orally in very high amounts. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, prior caffeine use, etc. (11832).
CHILDREN: POSSIBLY SAFE
when used in food and beverage amounts (4912,11833).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of black tea, mothers should closely monitor their intake to ensure moderate consumption. Caffeine crosses the human placenta but is not considered a teratogen. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,37802,37584). In some studies, consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in females with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy patients can safely consume doses up to 300 mg daily during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 3 cups of black tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as black tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine from black tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 3 cups of black tea. High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,24995,24998,37561,37898,38012,38186,38199,38212)(38285,38290). Preliminary evidence from a population study also suggests that increasing consumption of black tea might increase the risk of spina bifida (15112); however, this finding needs to be verified with additional research.
Cohort studies suggest that consuming large amounts of caffeine during pregnancy may reduce the height and weight of the infants born as they grow up. In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as black tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
More evidence is needed to determine the safety of using black tea during pregnancy. For now, advise avoidance of large quantities of black tea during pregnancy.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of black tea, caffeine intake should be closely monitored. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations. Minimal consumption would likely result in limited exposure to a nursing infant (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of black tea might cause irritability and increased bowel activity in nursing infants (6026). Black tea might also interfere with iron metabolism and folic acid bioavailability in nursing infants (631,53782). Large doses or excessive intake of black tea should be avoided during lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Cardamom has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Cardamom powder 3 grams daily in 2-3 divided doses has been used with apparent safety for up to 16 weeks (95308,95597,101885,107920). ...when the essential oil is used by inhalation for aromatherapy (77054,95307).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods.
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Cardamom is thought to have abortifacient and emmenagogue effects (19,39884). Avoid using amounts greater than those used in food.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of cardamom when used in medicinal amounts. Avoid using amounts greater than those used in food.
LIKELY SAFE ...when consumed in amounts commonly found in foods. Ceylon cinnamon has Generally Recognized As Safe (GRAS) status in the US for use as a spice or flavoring agent (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Ceylon cinnamon 0.5-3 grams daily has been safely used in studies lasting up to 6 months (4,12,97248,97250,99874). ...when used as a mouth rinse for up to 15 days (92071). There is insufficient reliable information available about the safety of Ceylon cinnamon when used orally in greater amounts or for longer periods. Ceylon cinnamon contains trace amounts of coumarin (108260). In very high doses, coumarin can cause hepatotoxicity (15302). However, since the amount of coumarin in Ceylon cinnamon is negligible, it is unlikely to cause toxic effects (89652,92072,92073).
PREGNANCY: LIKELY SAFE
when consumed in amounts commonly found in foods (4912).
PREGNANCY: LIKELY UNSAFE
when used orally in amounts greater than those found in foods.
Fetal abnormalities have been reported in animals (4,12).
LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of Ceylon cinnamon in amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when clove oil is applied topically (272). A clove oil 1% cream has been applied to the anus with apparent safety for up to 6 weeks (43487). A liposome-based product containing clove oil 45% has been applied to the palms with apparent safety for up to 2 weeks (100596).
LIKELY UNSAFE ...when clove smoke is inhaled. Smoking clove cigarettes can cause respiratory injury (17,43599). ...when clove oil is injected intravenously. This can cause pulmonary edema, hypoxemia, and acute dyspnea (16384). There is insufficient reliable information available about the safety of using clove orally in medicinal amounts.
CHILDREN: LIKELY UNSAFE
when clove oil is taken orally.
Ingesting 5-10 mL of undiluted clove oil has been linked to reports of coagulopathy, liver damage, and other serious side effects in infants and children up to 3 years of age (6,17,43385,43395,43419,43457,43652).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts found in foods (4912).
Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of using clove in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
POSSIBLY SAFE ...when used orally, short-term. Holy basil leaf extract has been used with apparent safety at a dose of 500 mg daily for 60-90 days (12242,18107,19575,91571,96944). ...when used topically in the mouth, short-term. Holy basil has been used with apparent safety as a 4% mouthwash solution for up to 30 days (91570,103621).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in high doses during pregnancy or when trying to conceive.
Animal research suggests that relatively high doses of holy basil extract (200 mg/kg) may reduce implantation rate when used for one week, while long-term use of higher doses (2-4 grams/kg) may decrease the number of full-term pregnancies (55040,91569). There is insufficient reliable information available regarding the safety of holy basil during lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Nutmeg is commonly used as a spice. Nutmeg and nutmeg oil have Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of nutmeg when used orally in larger doses, up to 120 mg daily. These doses have not been adequately evaluated in clinical research. However, doses at or above 120 mg daily have been associated with serious adverse effects (19292).
POSSIBLY UNSAFE ...when used orally in doses of 120 mg or greater. Chronic use of nutmeg in these doses has been associated with psychotic episodes and hallucinations (19292,19296,19487). Acute intoxication from nutmeg has been described in several case reports in which subjects ingested a single dose of 5-80 grams (2563,19297,19300,19491,111750). Symptoms of toxicity ranged from nausea, dry mouth, and dizziness to palpitations, agitation, and hallucinations (2563,3494,19293,19294,19295,19297,19298,19299,19489,19490)(19491,103373,111750). Two deaths involving nutmeg intoxication have also been reported (19300,112016) . Symptoms generally start 0.5-8 hours after ingestion and last up to 24-48 hours (19298,19488,19491,103372,103373). There is insufficient reliable information available about the safety of nutmeg when used topically.
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts commonly found in foods.
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Nutmeg might have abortifacient activity, and its safrole content might be mutagenic (12).
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts commonly found in foods.
There is insufficient reliable information available about the safety of nutmeg when used in larger, medicinal amounts during lactation; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Tulsi Masala Chai. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, basil might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, basil might increase the risk of hypotension when taken with antihypertensive drugs.
Animal research suggests that basil extract can reduce systolic and diastolic blood pressure (76893).
|
Theoretically, black pepper might increase the effects and side effects of amoxicillin.
Animal research shows that taking piperine, a constituent of black pepper, with amoxicillin increases plasma levels of amoxicillin (29269). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
In vitro research shows that piperine, a constituent of black pepper, seems to inhibit platelet aggregation (29206). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research shows that piperine, a constituent of black pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, black pepper might increase blood levels of atorvastatin.
Animal research shows that taking piperine, a constituent of black pepper, 35 mg/kg can increase the maximum serum concentration of atorvastatin three-fold (104188). This has not been reported in humans.
|
Theoretically, black pepper might increase blood levels of carbamazepine, potentially increasing the effects and side effects of carbamazepine.
One clinical study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that taking a single 20 mg dose of purified piperine, a constituent of black pepper, increases carbamazepine levels. Piperine may increase carbamazepine absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or inhibiting cytochrome P450 3A4 (CYP3A4) in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833). In vitro research also shows that piperine can increase carbamazepine levels by 11% in a time-dependent manner (103819).
|
Theoretically, black pepper might increase the effects and side effects of cyclosporine.
In vitro research shows that piperine, a constituent of black pepper, increases the bioavailability of cyclosporine (29282). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP1A1.
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP1A1 (29213). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2B1.
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP2B1 (29332). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2D6.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP3A4.
|
Theoretically, black pepper might increase blood levels of lithium due to its diuretic effects. The dose of lithium might need to be reduced.
Black pepper is thought to have diuretic properties (11).
|
Black pepper might increase blood levels of nevirapine.
Clinical research shows that piperine, a constituent of black pepper, increases the plasma concentration of nevirapine. However, no adverse effects were observed in this study (29209).
|
Theoretically, black pepper might increase levels of P-glycoprotein substrates.
|
Theoretically, black pepper might increase the sedative effects of pentobarbital.
Animal research shows that piperine, a constituent of black pepper, increases pentobarbital-induced sleeping time (29214).
|
Black pepper might increase blood levels of phenytoin.
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption, slow elimination, and increase levels of phenytoin (537,14442). Taking a single dose of black pepper 1 gram along with phenytoin seems to double the serum concentration of phenytoin (14375). Consuming a soup with black pepper providing piperine 44 mg/200 mL of soup along with phenytoin also seems to increase phenytoin levels when compared with consuming the same soup without black pepper (14442).
|
Black pepper might increase blood levels of propranolol.
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of propranolol (538).
|
Black pepper might increase blood levels of rifampin.
|
Black pepper might increase blood levels of theophylline.
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of theophylline (538).
|
Theoretically, black tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Black tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level (38172). However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products, be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
|
Theoretically, black tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking black tea with antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, concomitant use of large amounts of black tea might increase cardiac inotropic effects of beta-agonists.
Black tea contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, black tea might reduce the effects of carbamazepine and increase the risk for convulsion.
Black tea contains caffeine. Animal research suggests that caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in black tea.
|
Theoretically, black tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Concomitant administration of black tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in black tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in black tea.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Caffeine is metabolized by CYP1A2 (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from black tea and increase caffeine levels.
|
Theoretically, black tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Black tea contains caffeine. Caffeine is a methylxanthine that may inhibit dipyridamole-induced vasodilation (11770,11772,24974,37985,53795). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products such as black tea, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
Black tea contains caffeine. In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using black tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for simulant adverse effects.
Black tea contains caffeine. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (6486,9740,10307). Tell patients to avoid taking caffeine with ephedrine and other stimulants.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, black tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Black tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been observed in humans.
|
Theoretically, black tea might reduce the effects of felbamate and increase the risk for convulsions.
Black tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decrease the anticonvulsant activity of felbamate (23563). However, this effect has not been observed in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
|
Theoretically, black tea might decrease the metabolism of flurbiprofen.
In vitro research shows that black tea decreases the metabolism of flurbiprofen, a cytochrome P450 2C9 (CYP2C9) substrate, by about 10%. However, clinical research suggests that drinking black tea does not significantly affect flurbiprofen plasma levels, metabolism, or elimination (11094).
|
Theoretically, black tea might increase the levels and adverse effects of flutamide.
Black tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk of adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
|
Theoretically, abrupt black tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Black tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinate coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patients switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Black tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, black tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
In vitro, black tea extract inhibits organic anion-transporting polypeptide (OATP)2B1. OATP2B1 is expressed in the small intestine and liver and is responsible for the uptake of drugs and other compounds. In an animal model, black tea extract was found to inhibit the absorption of rosuvastatin, a substrate of OATP2B1 (104584). However, this effect has not been reported in humans.
|
Theoretically, black tea might decrease the effects of pentobarbital.
Black tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, black tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine. Also, black tea may bind to phenothiazines and reduce their absorption.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, black tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, black tea might increase the levels and clinical effects of pioglitazone.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Black tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might decrease the levels and clinical effects of rosuvastatin.
In animals, taking black tea extract along with rosuvastatin reduces plasma levels of rosuvastatin by approximately 48%. In vitro, black tea extract was found to inhibit organic anion-transporting polypeptide (OATP)2B1, a protein expressed in the small intestine that is responsible for the uptake of rosuvastatin and other compounds (104584). This effect has not been reported in humans.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Black tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, black tea might increase the levels and adverse effects of theophylline.
|
Theoretically, black tea might increase the levels and adverse effects of tiagabine.
Black tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, TCAs might bind with black tea constituents when taken at the same time.
|
Theoretically, black tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Consuming large amounts of black tea might decrease the effects of warfarin.
In one case, a 67-year-old female who took warfarin and who regularly consumed large amounts of black tea had a stable international normalized ratio (INR) of 1.7 to 2.7. However, the INR increased to 5 when tea consumption was discontinued. It is thought that the vitamin K content of black tea may have reduced the effects of warfarin (16902). Monitor patients carefully who start or discontinue drinking black tea while taking warfarin.
|
Theoretically, Ceylon cinnamon may have additive effects with antidiabetes drugs.
|
Theoretically, Ceylon cinnamon might have additive effects with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, clove oil may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, concomitant use of clove extracts with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical and laboratory research suggest that polyphenol extracts from clove flower buds might lower blood glucose levels (100595). Dosing adjustments for insulin or oral hypoglycemic agents may be necessary when taken with clove. Monitor blood glucose levels closely.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP1A2.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP1A2 in a dose-dependent manner, (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2C9.
In vitro research shows that eugenol, the principal constituent of clove, inhibits CYP2C9 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2D6.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP2D6 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP3A4.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP3A4 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, topical application of clove oil with ibuprofen might increase the absorption and side effects of topical ibuprofen.
Laboratory research shows that topical application of clove oil increases the absorption of topical ibuprofen (98854). This interaction has not been reported in humans.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, holy basil seed oil might increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
Animal research shows that holy basil seed oil can prolong bleeding time, possibly due to inhibition of platelet aggregation (13251). However, it is not known if this occurs in humans.
|
Theoretically, holy basil might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, holy basil seed oil might increase the sedative effects of pentobarbital.
|
Theoretically, concomitant use of nutmeg and anticholinergic drugs might decrease the effectiveness of either agent.
Animal research suggests that nutmeg extract can inhibit acetylcholinesterase and might increase acetylcholine levels (25549).
|
Theoretically, concomitant use of nutmeg with other cholinergic drugs might have additive effects and increase the risk of cholinergic side effects.
Animal research suggests that nutmeg extract can inhibit acetylcholinesterase and might increase acetylcholine levels (25549).
|
Theoretically, nutmeg might increase the risk of additive sedation when taken with CNS depressants.
Animal studies suggest that nutmeg extracts and several volatile oils in nutmeg, such as methyleugenol, isoeugenol, safrole, myristicin, trimyristin, 1,8-cineole, and geranyl acetate, have sedative effects (2563,25544,25545,25547,25548). One animal study shows that petroleum ether extracts of nutmeg can potentiate the effects of pentobarbital or phenobarbital (25547). However, evidence from other animal research suggests that the nutmeg constituent myristicin can actually reduce sleeping time in rats pretreated with phenobarbital (3492,3493).
|
Theoretically, nutmeg might decrease the levels and clinical effects of drugs metabolized by CYP1A1.
Animal research suggests that intraperitoneal injections of myristicin, a constituent of nutmeg, can induce CYP1A1 (3493).
|
Theoretically, nutmeg might decrease levels of drugs metabolized by CYP1A2.
Animal research suggests that intraperitoneal injections of myristicin, a constituent of nutmeg, can induce CYP1A2 (3493).
|
Theoretically, nutmeg might decrease levels of drugs metabolized by CYP2B1.
Animal research suggests that intraperitoneal injections of myristicin, a constituent of nutmeg, can induce CYP2B1 (3493).
|
Theoretically, nutmeg might increase or decrease the effects and adverse effects of phenobarbital.
|
Below is general information about the adverse effects of the known ingredients contained in the product Tulsi Masala Chai. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Topically, basil seems to be well tolerated.
Immunologic ...Allergic contact dermatitis has been reported in a 45-year old woman with occupational exposure to basil (95140).
General
...Orally, black pepper seems to be well tolerated when used in the amounts found in food or when taken as a medicine as a single dose.
Topically and as aromatherapy, black pepper oil seems to be well tolerated.
Most Common Adverse Effects:
Orally: Burning aftertaste, dyspepsia, and reduced taste perception.
Inhalation: Cough.
Serious Adverse Effects (Rare):
Orally: Allergic reaction in sensitive individuals.
Gastrointestinal ...Orally, black pepper can cause a burning aftertaste (5619) and dyspepsia (38061). Single and repeated application of piperine, the active constituent in black pepper, to the tongue and oral cavity can decrease taste perception (29267). By intragastric route, black pepper 1.5 grams has been reported to cause gastrointestinal microbleeds (29164). It is not clear if such an effect would occur with oral administration.
Immunologic ...In one case report, a 17-month-old male developed hives, red eyes, facial swelling, and a severe cough following consumption of a sauce containing multiple ingredients. Allergen skin tests were positive to both black pepper and cayenne, which were found in the sauce (93947).
Ocular/Otic ...Topically, ground black pepper can cause redness of the eyes and swelling of the eyelids (5619).
Pulmonary/Respiratory ...When inhaled through the nose as an olfactory stimulant, black pepper oil has been reported to cause cough in one clinical trial (29162).
General
...Orally, black tea is well tolerated when consumed as a beverage in moderate amounts.
Most Common Adverse Effects:
Orally: Many of the adverse effects of black tea can be attributed to its caffeine content, such as diuresis, gastric irritation, insomnia, nausea, nervousness, restlessness, tachycardia, tachypnea, tremors, and vomiting.
Serious Adverse Effects (Rare):
Orally: Many of the adverse effects of black tea can be attributed to its caffeine content, such as arrhythmia, chest pain, convulsions, delirium, premature heartbeat, and respiratory alkalosis. Large doses of caffeine can cause massive catecholamine release and subsequent sinus tachycardia, metabolic acidosis, hyperglycemia, and ketosis.
Cardiovascular
...Orally, black tea can cause some cardiovascular-related adverse events.
Some of these effects may be due to the caffeine content of black tea. Acute administration of black tea can cause increased blood pressure. However, regular consumption does not seem to increase blood pressure or pulse, even in patients with mild hypertension (1451,1452,2722). Also, epidemiological research suggests that there is no association of caffeine consumption with incidence of hypertension (13739).
Black tea, which contains caffeine, may cause other adverse cardiovascular effects when used orally. These effects include tachycardia, tachypnea, chest pain, premature heartbeat, arrhythmia, and hypertension (2729,11832,11838,13735). Large doses of caffeine can also cause massive catecholamine release and subsequent sinus tachycardia (13734).
There is evidence that daily consumption of strong black tea (2 liters) or black tea solids (4 grams) can raise plasma homocysteine levels. It is unclear if lower doses have this effect (8035). Some epidemiological research has linked tea consumption with ischemic heart disease and total mortality (220,36339). Combining caffeinated beverages such as black tea with ephedra may theoretically increase the risk of adverse cardiovascular events. There is a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275).
Dental ...Orally, black tea may cause tooth surface loss and teeth staining (36370).
Endocrine
...Black tea contains caffeine.
Large doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734).
Some evidence shows caffeine is associated with fibrocystic breast disease, breast cancer, and endometriosis. However, other research has not supported this finding (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study found no association between consumption of caffeine-containing beverages such as black tea and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of two low-quality observational studies found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal ...Orally, caffeine in black tea can cause gastric irritation, nausea, and vomiting (11832,11838,13735). Some believe that long-term use of caffeine can cause withdrawal symptoms following discontinuation of use. However, the existence of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Gastrointestinal withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant gastrointestinal symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Hematologic ...Orally, caffeine in black tea can cause hypokalemia (11832,11838,13735). In infants, black tea can cause microcytic anemia (631).
Immunologic ...Orally, caffeine in black tea can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Some epidemiological research suggests that caffeine, which is found in black tea, may be associated with an increased risk of osteoporosis, but conflicting evidence exists.
Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg per day, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Some researchers believe that stopping regular use of caffeine may cause withdrawal symptoms such as muscle tension and muscle pains. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Neurologic/CNS
...Orally, caffeine in black tea can cause insomnia, nervousness, headache, anxiety, agitation, jitteriness, restlessness, ringing in the ears, tremors, delirium, and convulsions (11832,11838,13735).
Caffeine may also exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204).
There is some concern that stopping regular use of caffeine may cause withdrawal symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Other symptoms such as delirium, nervousness, restlessness, and anxiety have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Oncologic ...There is some evidence that consumption of black tea (greater than 1 cup per day) may increase the risk of colon and rectal cancers (8041,36482). Drinking 3 or more cups daily has been shown to increase the risk of pancreatic cancer (36507). In addition, drinking black tea more than once a day, drinking strong black tea, or using more than 300 grams of tea leaves per month is associated with an approximately 2-fold increased risk of esophageal cancer when compared with drinking black tea up to once daily, drinking mild to moderate black tea, or using up to 300 grams of tea leaves per month (102756). Some evidence also shows caffeine, which is found in black tea, is associated with breast cancer in females. However, this is controversial since findings are conflicting (8043).
Pulmonary/Respiratory ...Orally, caffeine in black tea may cause tachypnea-induced respiratory alkalosis (11832,11838,13735). Some researchers think that stopping regular use of caffeine may cause withdrawal symptoms such as runny nose. However, this symptom may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Renal ...Orally, caffeine in black tea may cause diuresis (11832,11838,13735).
General ...Orally, cardamom seems to be well tolerated.
Dermatologic ...Orally, mild skin inflammation due to cardamom has been reported in one participant of a clinical trial (101887). Topically, a case report describes chronic hand dermatitis in a confectioner frequently exposed to cardamom. Skin patch tests were positive for cardamom, and for terpenoids present in the seeds (39875).
Genitourinary ...Orally, dysuria due to cardamom has been reported in one participant of a clinical trial (101887). Also, a case report describes a 5-year-old female who developed hematuria after eating ice cream flavored with cardamom. It resolved spontaneously and there was no re-challenge (95306). It is not clear if cardamom is the direct cause of hematuria in this case.
General
...Orally, Ceylon cinnamon is generally well tolerated, and adverse reactions are uncommon.
Most Common Adverse Effects:
Orally: Bloating, dyspepsia, nausea.
Topically: Allergic dermatitis, irritation of mucous membranes and skin.
Dermatologic
...Orally, a case of systemic contact dermatitis has been reported in a patient who consumed cinnamon (type not specified) after being previously sensitized to cinnamyl alcohol via cutaneous exposure (95599).
In a small study of oral Ceylon cinnamon, two patients reported itching (104520). In another small study, two patients reported rashes (108263).
Topically, cinnamon oil can cause skin irritation and allergic dermatitis, probably due to cinnamaldehyde which makes up 60% to 80% of cinnamon oil (2537,12635,92071,95596,95599). In one case report, a 16-year-old female experienced worsening dermatitis after using a homemade facial scrub containing cinnamon powder (type not specified). Symptoms improved after discontinuation of the scrub (95596). Several cases of intraoral allergic contact dermatitis have been reported in patients consuming cinnamon (type not specified) or using products containing constituents of cinnamon (95598).
Gastrointestinal ...Orally, gastrointestinal side effects such as heartburn, nausea, bloating, and dyspepsia have been reported (97250).
Hematologic ...Orally, a case of postoperative hemorrhage is reported in a 49-year-old patient after taking Ceylon cinnamon 1 tablespoon daily for 10 months. One day post-colectomy, the patient had an INR of 1.59 and intraabdominal bleeding that required exploratory laparotomies, blood transfusion, and fresh frozen plasma. Ultimately, the patient was discharged (112421).
Hepatic ...While there is concern about the coumarin content in cassia cinnamon increasing the risk for hepatic adverse effects and bleeding, the amount of coumarin in Ceylon cinnamon is negligible and unlikely to cause toxic effects (89652,92072,92073). In one case report, a 73-year-old female taking rosuvastatin for several months developed elevated liver function tests (LFTs), abdominal pain, nausea, and vomiting after taking cinnamon (unknown dose and type) for 7 days. The acute hepatitis and elevated LFTs resolved after stopping both cinnamon and rosuvastatin. The patient was later able to resume rosuvastatin without recurrence (97249).
General
...Orally, clove is well tolerated when consumed as a spice; however, clove oil in doses of only 5-10 mL can be toxic in children.
Topically, clove is generally well tolerated. When inhaled or used intravenously, clove may be unsafe.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, dental decay, itching, mucous membrane irritation, tingling, ulcers.
Inhaled: Dental decay, hypertension, itching, tachycardia.
Serious Adverse Effects (Rare):
Orally: Liver failure, respiratory distress.
Inhaled: Pneumonitis, pulmonary edema, respiratory distress.
Cardiovascular ...Smoking clove cigarettes increases heart rate and systolic blood pressure (12892).
Dental ...Population research has found that the risk of dental decay is increased in clove cigarette smokers (43332). Repeated topical application of clove in the mouth can cause gingival damage and skin and mucous membrane irritation (4,272,512). Eugenol, a constituent of clove and a material commonly found in dentistry, has been associated with side effects including gum inflammation and irritation (43365,43373,43522).
Dermatologic ...The American Dental Association has accepted clove for professional use, but not nonprescription use, due to potential damage to soft tissue that may be induced by clove application. In clinical research, small aphthous-like ulcers appeared in the area of the mouth where clove gel was applied in four participants (43448). Skin irritation and stinging have been reported with clove oil application (43338,43626). In a 24-year-old, exposure to a clove oil spill resulted in permanent local anesthesia and anhidrosis, or lack of sweating, at the affected area (43626).
Endocrine ...A case of hypoglycemia and metabolic acidosis have been reported after administration of one teaspoon of clove oil to a seven-month-old infant (43457). A case of electrolyte imbalance following accidental ingestion by a seven-month-old has also been reported (6).
Hematologic ...A case of disseminated intravascular coagulation has been reported in a 2-year-old patient after consuming between 5-10 mL of clove oil. The patient was treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III. On the fifth day, the patient started to improve and made a full recovery (43652).
Hepatic ...There are three cases of hepatic failure occurring in children after ingestion of 5-10 mL of clove oil (43395,43419,43652). Liver injury also occurred in a 3-year-old male (96949). These patients were successfully treated with N-acetylcysteine. The course of liver injury seems to be milder and shorter with early N-acetylcysteine treatment (43395,43419,96949). Another patient, who also presented with disseminated intravascular coagulation, was successfully treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III (43652).
Immunologic ...Contact dermatitis and urticaria has been reported following topical exposure to clove oil or eugenol, a constituent of clove oil (12635,43339,43606,43346).
Neurologic/CNS ...CNS depression has been reported in a 7-month-old who was given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457). A case of confusion and inability to speak has been reported secondary to oral exposure to clove oil and alcohol. The patient required intubation and was successfully treated with thiamine and normal saline (43580). Seizure and coma have been reported in a two-year-old male after ingesting 5-10 mL of clove oil (43652).
Pulmonary/Respiratory
...Clove cigarettes have been associated with throat and chest tightness (43337), pulmonary edema (43618), and fatal aspiration pneumonitis (43599).
The causative factor may be clove alone or clove along with other substances found in cigarettes. Clove cigarettes contain significant amounts of nicotine, tar, and carbon monoxide and increase plasma levels of nicotine and exhaled carbon monoxide, which might cause long-term health effects similar to tobacco smoking (12892). According to the American Medical Association, inhaling clove cigarette smoke has been associated with severe lung injury in a few susceptible individuals with prodromal respiratory infection. Also, some individuals with normal respiratory tracts have apparently suffered aspiration pneumonitis as the result of a diminished gag reflex induced by a local anesthetic action of eugenol, which is volatilized into the smoke (43602).
Intravenous injection of clove oil in a 32-year-old female resulted in hypoxia, acute dyspnea, interstitial and alveolar infiltrates, and non-cardiogenic pulmonary edema. The patient was managed with supplemental oxygen and recovered over the next seven days (16384).
Occupational exposure to eugenol, a constituent of clove, has also been reported to cause asthma and rhinitis (43492).
Renal ...Proteinuria and other urinary abnormalities were observed in a seven-month-old infant given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally and topically, holy basil extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Loose stools and nausea.
Topically: Bitter taste with oral application.
Gastrointestinal
...Orally, two out of 24 participants taking capsules containing holy basil extract in one clinical study experienced nausea or loose stools (55037).
Topically, holy basil mouthwash has been reported to cause a bitter taste in clinical trials (55038).
General
...Orally, nutmeg is generally well tolerated when used as a spice in foods.
Acute or chronic use of nutmeg at high doses is unsafe.
Most Common Adverse Effects:
Topically: Allergic contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Accidental or intentional overdose with nutmeg has been associated with several serious adverse cardiovascular, gastrointestinal, neurological, and psychiatric events. Death due to overdose has also been reported.
Cardiovascular ...Orally, in cases of nutmeg overdose, tachycardia, palpitations, weak pulse, hypotension, and nonspecific electrocardiographic changes have been reported (3494,19293,19295,19299,19300,19488,19489,25943,103372,103373)(111750).
Dermatologic ...Topically, allergic contact dermatitis to nutmeg has been reported (25945,25946).
Gastrointestinal ...Orally, nausea was reported in a 13-year-old female consuming nutmeg capsules while smoking cannabis (2563). Vomiting was reported in a case of a 19-year-old female using high doses of nutmeg with a history of lysergic acid diethylamide (LSD) and cannabis use (19294). Burning epigastric pain, gastroenteritis, diarrhea, nausea, and increased thirst have been reported in other cases of intentional or unintentional nutmeg overdose (19293,19299,19300,19489,19490,103372,103373). Vomiting has been reported in a 17-year-old male who snorted at least 15 grams of nutmeg powder (103372).
Hematologic ...Orally, hyponatremia and leukocytosis with neutrophilia associated with nutmeg overdose have been rarely reported (103372).
Hepatic ...Orally, elevated liver enzymes associated with nutmeg overdose have been reported rarely (103372).
Immunologic ...Topically, allergic contact dermatitis to nutmeg has been reported (25945,25946).
Musculoskeletal ...Orally, muscle weakness, numbness, and ataxia were reported in a 13-year-old female consuming nutmeg capsules while smoking cannabis (2563). An ataxic gait has been reported in a 17-year-old male who snorted at least 15 grams of nutmeg powder (103372).
Neurologic/CNS ...Orally, headache, dizziness, and drowsiness were reported in a 13-year-old female consuming nutmeg capsules while smoking cannabis (2563). Adverse effects associated with high intake of nutmeg have included confusion, dizziness, drowsiness, hallucinations, headache, incoherent speech, hot and cold sensations, sensations of limb loss, convulsions, and coma (19294,19299,19300,19487,19489,19490,103372,103373,111750). Sweating and hypothermia have also been reported following intake of high doses of nutmeg (19293,19294). Lethargy has been reported in a 17-year-old male who snorted at least 15 grams of nutmeg powder (103372).
Ocular/Otic ...Orally, a case of double, triple, and blurred vision has been reported for a 13-year-old female who consumed nutmeg capsules while smoking cannabis (2563). Pupil dilation and pupil constriction has been reported from exposure to nutmeg (25948). Involuntary eye movement has been reported in a 17-year-old male who snorted at least 15 grams of nutmeg powder (103372).
Psychiatric ...Orally, visual, auditory, and tactile hallucinations, depression, suicidal ideation, insomnia, restlessness, and bizarre behavior have been reported following nutmeg intoxication in various reports (12,2563,19300,19492,103372,103373). Other adverse effects associated with high intake of nutmeg have included disorientation, stupor, euphoria, anxiety, and agitation (19300,19489,103373,103374). Chronic psychosis has been associated with rare cases of prolonged abuse of nutmeg (103372). However, some researchers suggest that nutmeg does not have significant psychological or behavioral effects, even when taken at high doses (25939,25947). Restlessness and anxiety have been reported in a 17-year-old male who snorted at least 15 grams of nutmeg powder (103372).
Other ...Orally, fatal poisoning associated with nutmeg is rare (19300,103372,103373).