Ingredients | Amount Per Serving |
---|---|
(Thiamine Mononitrate, Vitamin B1)
(Thiamin (Form: as Thiamin Mononitrate) (Alt. Name: Vitamin B-1) )
|
1.5 mg |
(Vitamin B2)
|
1.7 mg |
20 mg | |
(Pyridoxine Hydrochloride)
(Vitamin B-6 (Form: as Pyridoxine Hydrochloride) )
|
2 mg |
(as hydrolyzed protein Chromium Chelate)
(Chromium (Form: as hydrolyzed protein Chromium Chelate) )
|
120 mcg |
Proprietary Herbal Blend
(Provides 180mg of caffeine.)
(Proprietary Herbal Blend Note: Provides 180mg of caffeine. )
|
522.5 mg |
Black Tea leaves extract
(Camellia sinensis )
(leaves)
|
|
Green Tea leaves extract
(Camellia sinensis )
(leaves)
(9.6% EGCG)
(Green Tea leaves extract (Form: 9.6% EGCG Note: = 50 mg) PlantPart: leaves Genus: Camellia Species: sinensis )
|
|
(bean)
|
|
Yerba Mate extract
(llex paraguariensis )
(Provides 180mg of caffeine.)
(Yerba Mate extract Genus: llex Species: paraguariensis Note: Provides 180mg of caffeine. )
|
500 mg |
(Vitis vinifera )
(skin)
|
210 mg |
200 mg | |
(Zingiber officinale )
(root)
|
200 mg |
(Vitis vinifera )
(seed)
(Polyphenols)
|
125 mg |
(Anethum graveolens )
|
5 mg |
Dicalcium Phosphate, Cellulose, Polyethylene Glycol, Vegetable Acetoglycerides, Titanium Dioxide Note: natural mineral whitener, Caramel color, Ethyl Vanillin
Below is general information about the effectiveness of the known ingredients contained in the product Appetrex Control. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Appetrex Control. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chromium has been safely used in doses up to 1000 mcg daily for up to 6 months (1934,5039,5040,6858,6859,6860,6861,6862,6867,6868)(7135,7137,10309,13053,14325,14440,17224,90057,90061)(90063,94234,95095,95096,95097,98687); however, most of these studies have used chromium doses in a range of 150-600 mcg. The Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, long-term. Chromium has been safely used in a small number of studies at doses of 200-1000 mcg daily for up to 2 years (7060,7135,42618,42628,42666,110605,110607,110609). However, the Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts not exceeding the daily adequate intake (AI) levels by age: 0-6 months, 0.
2 mcg; 7-12 months, 5.5 mcg; 1-3 years, 11 mcg; 4-8 years, 15 mcg; males 9-13 years, 25 mcg; males 14-18 years, 35 mcg; females 9-13 years, 21 mcg; females 14-18 years, 24 mcg (7135). POSSIBLY SAFE...when used orally and appropriately in amounts exceeding AI levels. Chromium 400 mcg daily has been used safely for up to 6 weeks (42680).
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for pregnancy is 28 mcg daily for those 14-18 years of age and 30 mcg daily for those 19-50 years of age (7135).
PREGNANCY: POSSIBLY SAFE
when used orally in amounts exceeding the adequate intake (AI) levels.
There is some evidence that patients with gestational diabetes can safely use chromium in doses of 4-8 mcg/kg (1953); however, patients should not take chromium supplements during pregnancy without medical supervision.
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for lactation is 44 mcg daily for those 14-18 years of age and 45 mcg daily for those 19-50 years of age (7135). Chromium supplements do not seem to increase normal chromium concentration in human breast milk (1937). There is insufficient reliable information available about the safety of chromium when used in higher amounts while breast-feeding.
There is insufficient reliable information available about the safety of chrysin.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Drinking decaffeinated coffee or coffee containing caffeine in low to moderate amounts is safe (15,98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 4 cups of coffee daily providing caffeine 400 mg daily is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of beverages such as coffee that contain caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Acute use of high doses of caffeine (more than 400 mg per day), which is found in more than 4 cups of caffeinated coffee, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Drinking caffeinated coffee in amounts greater than 6 cups per day (about 600 mg caffeine) short-term or long-term can also cause caffeinism, with symptoms of anxiety possibly progressing to delirium and agitation. Chronic use of caffeine, especially in large amounts, can sometimes produce tolerance, habituation, and psychological dependence (3719). Abrupt discontinuance of caffeine can cause physical withdrawal symptoms (11733). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. ...when used rectally as an enema. Coffee enemas have been linked to cases of severe electrolyte abnormalities and septicemia leading to severe side effects including death (3026,3347,3349,6652).
CHILDREN: POSSIBLY SAFE
when coffee containing caffeine is consumed orally in moderate amounts.
Oral intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). However, higher doses should be avoided. The adverse effects typically associated with caffeine-containing coffee are usually more severe in children than adults (11733).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Intake of caffeine from coffee and other sources should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen. Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). In some studies, consuming amounts over 200 mg daily has been associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in people with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume caffeine in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when caffeinated coffee providing more than 300 mg of caffeine daily is consumed orally.
Caffeine from coffee crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption from all sources below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee. High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). Drinking more than 6 cups of coffee daily increases the risk of spontaneous abortion (2709). Drinking 8 or more cups of coffee daily doubles the risk of stillbirth when compared with those who do not drink coffee during pregnancy (10621).
LACTATION: POSSIBLY SAFE
when used orally.
Drinking one or two caffeine-containing beverages daily during lactation is not associated with unacceptable levels of caffeine in human milk (11734).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine from coffee can cause wakefulness or irritability in breast-fed infants. Caffeine can also cause feeding intolerance and gastrointestinal irritation in infants (6026).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dill has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dill when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used in medicinal amounts.
Dill seed is used to stimulate menstrual flow (19). Theoretically, dill seed might adversely affect pregnancy.
LACTATION:
Insufficient reliable information available; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when the whole fruit of the grape, or extracts of the fruit, seed, or leaf, are used orally and appropriately in medicinal amounts. Grape seed extracts have been used with apparent safety in doses up to 200 mg daily for up to 11 months (9182,53016) and in doses up to 2000 mg daily for up to 3 months (53149,53190). Specific grape fruit extracts (Stilvid, Actafarma; Cognigrape, Bionap srl) have been used with apparent safety in doses up to 250-350 mg daily for 3-12 months or 700 mg daily for 6 months (53254,53256,96198). A specific grape leaf extract (AS 195, Antistax, Boehringer Ingelheim) has been used with apparent safety in doses up to 720 mg daily for up to 3 months (2538,52985,53005,53206). A preparation of dehydrated whole grapes, equivalent to 250 grams of fresh grapes daily, has also been used with apparent safety for up to 30 days (18228). A specific grape seed extract (Enovita; Indena SpA) 150 mg twice daily, standardized to provide at least 95% oligomeric proanthocyanins, has been used with apparent safety for up to 16 weeks (108091) ...when used topically and appropriately. Creams and ointments containing grape seed extract 2% or 5% have been used topically with apparent safety for up to 3 weeks (91539,100955). There is insufficient reliable information available about the safety of other grape plant parts when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). However, whole grapes should be eaten with caution in children aged 5 years and under. Whole grapes can be a choking hazard for young children (96193). To reduce the risk of choking, whole grapes should be cut in half or quartered before being given to children. There is insufficient reliable information available about the safety of grape when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of medicinal amounts during pregnancy and breast-feeding; avoid using in amounts greater than what is commonly found in foods.
LIKELY SAFE ...when niacin is taken in food or as a supplement in amounts below the tolerable upper intake level (UL) of 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243). ...when prescription products are used orally and appropriately in doses of up to 2 grams daily (12033). CHILDREN:
LIKELY SAFE ...when used orally in amounts that do not exceed the tolerable upper intake level (UL). The ULs of niacin for children are: 1-3 years of age, 10 mg daily; 4-8 years of age, 15 mg daily; 9-13 years of age, 20 mg daily; 14-18 years of age, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL of niacin during pregnancy and lactation is 30 mg daily for 14-18 years of age and 35 mg daily for 19 years and older (6243).
There is insufficient reliable information available about the safety of larger oral doses of niacin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately. Riboflavin 400 mg daily has been taken for up to 3 months, and 10 mg daily has been taken safely for up to 6 months (4912,91752,105480). A tolerable upper intake level (UL) has not been established (3094,91752,94089).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089). ...when used orally in higher doses for up to 1 year. Doses of 100-200 mg daily have been used safely for 4-12 months in children ages 9-13 years (71483,105484).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089).
LIKELY SAFE ...when used orally and appropriately. A tolerable upper intake level (UL) has not been established for thiamine, and doses up to 50 mg daily have been used without adverse effects (15,6243). ...when used intravenously or intramuscularly and appropriately. Injectable thiamine is an FDA-approved prescription product (15,105445).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 1.
4 mg daily. A tolerable upper intake level (UL) has not been established for healthy individuals (3094,6243).
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily in the form of pyridoxine for adults (15,6243). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 30 mg daily for children aged 1-3 years, 40 mg daily for 4-8 years, 60 mg daily for 9-13 years, and 80 mg daily for 14-18 years (6243).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (6243).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring. The tolerable upper intake level (UL) refers to vitamin B6 in the form of pyridoxine and is 80 mg daily for those aged 14-18 years and 100 mg daily for 19 years and older (6243).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 80 mg daily for those aged 14-18 years and 100 mg daily for those 19 years and older.
The recommended dietary allowance (RDA) in lactating women is 2 mg daily (6243). There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product Appetrex Control. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, chromium may have additive effects with antidiabetic agents and increase the risk of hypoglycemia.
|
Theoretically, aspirin might increase chromium absorption.
Animal research suggests that aspirin may increase chromium absorption and chromium levels in the blood (21055).
|
Theoretically, concomitant use of chromium and insulin might increase the risk of hypoglycemia.
|
Chromium might bind levothyroxine in the intestinal tract and decrease levothyroxine absorption.
Clinical research in healthy volunteers shows that taking chromium picolinate 1000 mcg with levothyroxine 1 mg decreases serum levels of levothyroxine by 17% when compared to taking levothyroxine alone (16012). Advise patients to take levothyroxine at least 30 minutes before or 3-4 hours after taking chromium.
|
NSAIDs might increase chromium levels in the body.
Drugs that are prostaglandin inhibitors, such as NSAIDs, seem to increase chromium absorption and retention (7135).
|
Theoretically, chrysin might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, chrysin might increase the effects and adverse effects of aromatase inhibitors.
|
Theoretically, chrysin might reduce the efficacy of estrogen-containing contraceptive drugs.
|
Theoretically, chrysin might increase levels of drugs metabolized by CYP1A2.
In vitro research suggests that chrysin inhibits CYP1A2 isozymes (7503,8172,42936,42956). However, chrysin does not appear to inhibit CYP1A2-dependent caffeine metabolism in animals (93643). Due to chrysin's low bioavailability and rapid metabolism to glucuronide and sulfate conjugates, this interaction is unlikely (7502,7504,7505,8168,42931,42938,93643).
|
Theoretically, chrysin might increase the effects and adverse effects of diclofenac.
|
Theoretically, chrysin might decrease the effects of estrogen therapy.
|
Theoretically, chrysin might increase the clearance of drugs that are UGT1A1 substrates, thereby reducing their effectiveness.
|
Theoretically, chrysin might increase the effects and adverse effects of mephenytoin.
In vitro research suggests that chrysin and its sulfate and glucuronide conjugates inhibit S-mephenytoin metabolism. It is speculated that chrysin and its conjugates reduce the metabolism of S-mephenytoin by inhibiting cytochrome P450 2C19 (106436). This effect has not been reported in humans.
|
Theoretically, chrysin might increase the effects and adverse effects of testosterone.
In vitro research suggests that chrysin and its sulfate conjugate inhibit testosterone metabolism. It is speculated that chrysin and its sulfate conjugate reduce the metabolism of testosterone by inhibiting cytochrome P450 3A4 (106436). This effect has not been reported in humans.
|
Theoretically, coffee might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Coffee contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level (38172). However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products, be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
|
Coffee reduces alendronate bioavailability.
Separate coffee ingestion and alendronate administration by two hours. Coffee reduces alendronate bioavailability by 60% (11735).
|
Theoretically, coffee may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Coffee contains caffeine. Caffeine is reported to have antiplatelet activity (8028,8029). Theoretically, the caffeine in coffee might increase the risk of bleeding when used concomitantly with these agents. However, this interaction has not been reported in humans. There is some evidence that caffeinated coffee might increase the fibrinolytic activity in blood (8030).
|
Theoretically, concomitant use of coffee and antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, concomitant use of large amounts of coffee might increase cardiac inotropic effects of beta-agonists.
Coffee contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, cimetidine might increase the effects and adverse effects of caffeine in coffee.
|
Theoretically, coffee might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Coffee contains caffeine. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in coffee.
|
Theoretically, coffee might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Coffee contains caffeine. Caffeine is a methylxyanthine that may inhibit dipyridamole-induced vasodilation (11770,11772,24974,37985,53795). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products such as coffee, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
Coffee contains caffeine. In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, concomitant use might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk of stimulant adverse effects.
Coffee contains caffeine. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,9740,10307). Tell patients to avoid taking caffeine with ephedrine and other stimulants.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Coffee contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
|
Coffee consumption can decrease the levels and clinical effects of lamotrigine.
A pharmacokinetic study in patients taking lamotrigine shows that consumption of coffee, both caffeinated and decaffeinated, can decrease the area under the concentration-time curve (AUC) and the peak plasma level (Cmax) of lamotrigine. Each additional cup of coffee reduced the AUC and Cmax by 4% and 3%, respectively. It is unclear whether this interaction is due to induction of lamotrigine metabolism or inhibition of lamotrigine absorption (107837).
|
Coffee can reduce the absorption of levothyroxine.
In some patients, coffee can reduce levothyroxine absorption, possibly through the formation of non-absorbable complexes. A pharmacokinetic study in these patients found that 25-30 mL of espresso coffee consumed with levothyroxine tablets delayed the time to peak plasma levels by 38-43 minutes, reduced the peak plasma level (Cmax) by 19% to 36%, and reduced the area under the curve (AUC) by 27% to 36%. Coffee consumed one hour after levothyroxine did not affect absorption (16401). It is not known whether this interaction occurs with other types of coffee. Tell patients to avoid drinking coffee at the same time that they take their levothyroxine, and for up to an hour afterwards.
|
Theoretically, abrupt coffee withdrawal might increase the levels and adverse effects of lithium.
Coffee contains caffeine. Abrupt caffeine withdrawal can increase serum lithium levels (609). Two cases of lithium tremor that worsened with abrupt coffee withdrawal have been reported (609,610). There is also one case of a 2.8-fold increase in blood lithium levels after a patient taking lithium reduced his coffee consumption from 13-20 cups daily to 10 cups daily (97369).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Coffee contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Coffee contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, coffee might reduce the effects of pentobarbital.
Coffee contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine. Also, coffee may bind to phenothiazines and reduce their absorption.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, coffee might increase the levels and clinical effects of pioglitazone.
Coffee contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Coffee contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Coffee contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Coffee contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, coffee might increase the levels and adverse effects of theophylline.
|
Theoretically, TCAs might bind with coffee constituents when taken at the same time.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Coffee contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, dill extract might have additive effects with antidiabetes drugs and increase the risk of hypoglycemia. Animal research shows that dill extract can reduce blood sugar levels (47799,47817). Monitor blood glucose levels closely. Dose adjustments might be necessary.
Some antidiabetes drugs include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Dill is thought to have diuretic properties (11). Theoretically, due to these potential diuretic effects, dill might reduce excretion and increase levels of lithium. The dose of lithium might need to be decreased.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, grape extracts may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Ingesting grape juice with cyclosporine can reduce cyclosporine absorption.
A small pharmacokinetic study in healthy young adults shows that intake of purple grape juice 200 mL along with cyclosporine can decrease the absorption of cyclosporine by up to 30% when compared with water (53177). Separate doses of grape juice and cyclosporine by at least 2 hours to avoid this interaction.
|
Theoretically, grape juice might reduce the levels of CYP1A2 substrates.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of CYP1A2 (2539).
|
It is unclear if grape juice or grape seed extract inhibits CYP2C9; research is conflicting.
In vitro evidence shows that grape seed extract or grape juice might inhibit CYP2C9 enzymes (11094,53011,53089). However, a small pharmacokinetic study in healthy adults shows that drinking 8 ounces of grape juice once does not affect the clearance of flurbiprofen, a probe-drug for CYP2C9 metabolism (11094). The effects of continued grape juice consumption are unclear.
|
Theoretically, grape seed extract may increase the levels of CYP2D6 substrates.
In vitro evidence suggests that grape seed extract might inhibit CYP2D6 enzymes (53011). However, this interaction has not been reported in humans.
|
Theoretically, grape seed extract might increase the levels of CYP2E1 substrates.
In vitro and animal research suggests that grape seed proanthocyanidin extract inhibits CYP2E1 enzymes (52949). However, this interaction has not been reported in humans.
|
It is unclear if grape seed extract inhibits or induces CYP3A4; research is conflicting.
|
Theoretically, long-term intake of grape seed extract might decrease the effects of midazolam.
Animal research shows that subchronic ingestions of grape seed extract can increase the elimination of intravenous midazolam by increasing hepatic CYP3A4 activity. Single doses of grape seed extract do not appear to affect midazolam elimination (53011).
|
Grape juice might decrease phenacetin absorption.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of cytochrome P450 1A2 (CYP1A2) (2539).
|
Concomitant use of alcohol and niacin might increase the risk of flushing and hepatotoxicity.
Alcohol can exacerbate the flushing and pruritus associated with niacin (4458,11689). Large doses of niacin might also exacerbate liver dysfunction associated with chronic alcohol use. A case report describes delirium and lactic acidosis in a patient taking niacin 3 grams daily who ingested 1 liter of wine (14510). Advise patients to avoid large amounts of alcohol while taking niacin.
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as allopurinol.
Large doses of niacin can reduce urinary excretion of uric acid, potentially resulting in hyperuricemia (4860,4863,12033). Doses of uricosurics such as allopurinol might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin may have additive effects when used with anticoagulant or antiplatelet drugs.
|
Niacin can increase blood glucose levels and may diminish the effects of antidiabetes drugs.
Niacin impairs glucose tolerance in a dose-dependent manner, probably by causing or aggravating insulin resistance and increasing hepatic production of glucose (4860,4863,11692,11693). In diabetes patients, niacin 4.5 grams daily for 5 weeks can increase plasma glucose by an average of 16% and glycated hemoglobin (HbA1c) by 21% (4860). However, lower doses of 1.5 grams daily or less appear to have minimal effects on blood glucose (12033). In some patients, glucose levels increase when niacin is started, but then return to baseline when a stable dose is reached (12033,93344). Up to 35% of patients with diabetes may need adjustments in hypoglycemic therapy when niacin is added (4458,4860,4863,11689,12033).
|
Theoretically, niacin may increase the risk of hypotension when used with antihypertensive drugs.
The vasodilating effects of niacin can cause hypotension (4863,12033,93341). Furthermore, some clinical evidence suggests that a one-hour infusion of niacin can reduce systolic, diastolic, and mean blood pressure in hypertensive patients. This effect is not observed in normotensive patients (25917).
|
Large doses of aspirin might alter the clearance of niacin.
Aspirin is often used with niacin to reduce niacin-induced flushing (4458,11689). Doses of 80-975 mg aspirin have been used, but 325 mg appears to be optimal (4458,4852,4853,11689). Aspirin also seems to reduce the clearance of niacin by competing for glycine conjugation. Taking aspirin 1 gram seems to reduce niacin clearance by 45% (14524). This is probably a dose-related effect and not clinically significant with the more common aspirin dose of 325 mg (11689,14524).
|
Bile acid sequestrants can bind niacin and decrease absorption. Separate administration by 4-6 hours to avoid an interaction.
In vitro studies show that colestipol (Colestid) binds about 98% of available niacin and cholestyramine (Questran) binds 10% to 30% (14511).
|
Theoretically, concomitant use of niacin and gemfibrozil might increase the risk of myopathy in some patients.
|
Theoretically, concomitant use of niacin and hepatotoxic drugs might increase the risk of hepatotoxicity.
Niacin has been associated with cases of liver toxicity, especially when used in pharmacologic doses (4863,11689,11691,25929,25930,25931,113553). Sustained-release niacin preparations appear to be associated with a higher risk of hepatotoxicity than immediate-release niacin (11691,25930,25931,93342,113553).
|
Theoretically, concomitant use of niacin and statins might increase the risk of myopathy and rhabdomyolysis in some patients.
Some case reports have raised concerns that niacin might increase the risk of myopathy and rhabdomyolysis when combined with statins (14508,25918). However, a significantly increased risk of myopathy has not been demonstrated in clinical trials, including those using an FDA-approved combination of lovastatin and niacin (Advicor) (7388,11689,12033,14509).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as probenecid.
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as probenecid might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as sulfinpyrazone.
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as sulfinpyrazone might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of thyroid hormones.
Clinical research and case reports suggests that taking niacin can reduce serum levels of thyroxine-binding globulin by up to 25% and moderately reduce levels of thyroxine (T4) (25916,25925,25926,25928). Patients taking thyroid hormone for hypothyroidism might need dose adjustments when using niacin.
|
Theoretically, concomitant use of niacin and transdermal nicotine might increase the risk of flushing and dizziness.
|
Theoretically, taking riboflavin with tetracycline antibiotics may decrease the potency of these antibiotics.
In vitro research suggests that riboflavin may inhibit the potency of tetracycline antibiotics (23372). It is not clear if this effect is clinically significant, as this interaction has not been reported in humans.
|
Trimethoprim might increase blood levels of thiamine.
In vitro, animal, and clinical research suggest that trimethoprim inhibits intestinal thiamine transporter ThTR-2, hepatic transporter OCT1, and renal transporters OCT2, MATE1, and MATE2, resulting in paradoxically increased thiamine plasma concentrations (111678).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Appetrex Control. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, chromium is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal irritation, headaches, insomnia, irritability, mood changes.
Serious Adverse Effects (Rare):
Orally: Rare cases of kidney and liver damage, rhabdomyolysis, and thrombocytopenia have been reported.
Dermatologic
...Orally, chromium-containing supplements may cause acute generalized exanthematous pustulosis (42561), skin rashes (42679), and urticaria (17224).
Also, chromium picolinate or chromium chloride may cause systemic contact dermatitis when taken orally, especially in patients with contact allergy to chromium (6624,90058). In one clinical study, a patient taking chromium nicotinate 50 mcg daily reported itchy palms that improved after the intervention was discontinued. It is unclear of this effect was due to the chromium or another factor (95096).
Topically, hexavalent chromium, which can be present in some cement, leather products, or contaminated soil, may cause allergic contact dermatitis (42645,42789,90060,90064,110606).
A case of lichen planus has been reported for a patient following long-term occupational exposure to chromium (42688).
Endocrine ...Orally, cases of hypoglycemia have been reported for patients taking chromium picolinate 200-1000 mcg daily alone or 200-300 mcg two or three times weekly in combination with insulin (42672,42783). Chromium picolinate has also been associated with weight gain in young females who do not exercise and in those following a weight-lifting program (1938).
Gastrointestinal
...Orally, chromium in the form of chromium picolinate, chromium polynicotinate, chromium-containing brewer's yeast, or chromium-containing milk powder may cause nausea, vomiting, diarrhea, decreased appetite, constipation, flatulence, or gastrointestinal upset (14325,42594,42607,42622,42643,42679).
Long-term exposure to heavy metals, including chromium, has been associated with increased risk of gallbladder disease and cancer (42682,42704).
Genitourinary ...Orally, chromium polynicotinate has been associated with disrupted menstrual cycles in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Hematologic ...Anemia, hemolysis, and thrombocytopenia were reported in a 33 year-old female taking chromium picolinate 1200-2400 mcg daily for 4-5 months (554). The patient received supportive care, blood product transfusions, and hemodialysis and was stabilized and discharged a few days later. Lab values were normal at a one-year follow-up.
Hepatic ...Liver damage has been reported for a 33-year-old female taking chromium picolinate 1200 mcg daily for 4-5 months (554). Also, acute hepatitis has been reported in a patient taking chromium polynicotinate 200 mcg daily for 5 months (9141). Symptoms resolved when the product was discontinued. Two cases of hepatotoxicity have been reported in patients who took a specific combination product (Hydroxycut), which also contained chromium polynicotinate in addition to several herbs (13037).
Musculoskeletal ...Acute rhabdomyolysis has been reported for a previously healthy 24-year-old female who ingested chromium picolinate 1200 mcg over a 48-hour time period (42786). Also, chromium polynicotinate has been associated with leg pain and paresthesia in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Neurologic/CNS ...Orally, chromium picolinate may cause headache, paresthesia, insomnia, dizziness, and vertigo (6860,10309,14325,42594). Vague cognitive symptoms, slowed thought processes, and difficulty driving occurred on three separate occasions in a healthy 35-year-old male after oral intake of chromium picolinate 200-400 mcg (42751). Transient increases in dreaming have been reported in three patients with dysthymia treated with chromium picolinate in combination with sertraline (2659). A specific combination product (Hydroxycut) containing chromium, caffeine, and ephedra has been associated with seizures (10307). But the most likely causative agent in this case is ephedra.
Psychiatric ...Orally, chromium picolinate has been associated with irritability and mood changes in patients taking the supplement to lose weight, while chromium polynicotinate has been associated with agitation and mood changes in patients taking the supplement to prevent weight gain during smoking cessation (6860,42643).
Renal
...Orally, chromium picolinate has been associated with at least one report of chronic interstitial nephritis and two reports of acute tubular necrosis (554,1951,14312).
Laboratory evidence suggests that chromium does not cause kidney tissue damage even after long-term, high-dose exposure (7135); however, patient- or product-specific factors could potentially increase the risk of chromium-related kidney damage. More evidence is needed to determine what role, if any, chromium has in potentially causing kidney damage.
Intravenously, chromium is associated with decreased glomerular filtration rate (GFR) in children who receive long-term chromium-containing total parenteral nutrition - TPN (11787).
Topically, burns caused by chromic acid, a hexavalent form of chromium, have been associated with acute chromium poisoning with acute renal failure (42699). Early excision of affected skin and dialysis are performed to prevent systemic toxicity.
Other ...Another form of chromium, called hexavalent chromium, is unsafe. This type of chromium is a by-product of some manufacturing processes. Chronic exposure can cause liver, kidney, or cardiac failure, pulmonary complications, anemia, and hemolysis (9141,11786,42572,42573,42699). Occupational inhalation of hexavalent chromium can cause ulceration of the nasal mucosa and perforation of the nasal septum, and has been associated with pneumoconiosis, allergic asthma, cough, shortness of breath, wheezing, and increased susceptibility to respiratory tract cancer and even stomach and germ cell cancers (42572,42573,42601,42610,42636,42667,42648,42601,42788,90056,90066). Although rare, cases of interstitial pneumonia associated with chromium inhalation have been reported. Symptoms resolved with corticosteroid treatment (42614).
General ...No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, caffeinated or decaffeinated coffee is well tolerated in moderate amounts.
Most Common Adverse Effects:
Orally: Drinking coffee containing caffeine can cause agitation, anxiety, chest pain, diuresis, gastric distress, headache, insomnia, nervousness, premature heart rate, ringing in the ears, and vomiting. These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly). With chronic caffeine use, especially in large amounts, habituation, tolerance, and psychological dependence can occur.
Abrupt discontinuation of caffeine may result in physical withdrawal symptoms, including anxiety, decreased physical energy, depressed mood, difficulty concentrating, drowsiness, fatigue, headache, irritability, reduced alertness, and rhinorrhea.
Rectally: Coffee enemas have been linked to proctocolitis, severe electrolyte abnormalities, and septicemia leading to death.
Cardiovascular
...Orally, coffee containing caffeine can cause chest pain and premature heartbeat (8042,111045).
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042). Excessive doses of caffeine can cause massive catecholamine release and subsequent sinus tachycardia (11832,11838,13734,13735).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in hypertensive patients (1451,1452,2722,13739,105312). Drinking one or more cups of caffeinated coffee daily also doesn't seem to increase the risk of developing hypertension in habitual coffee drinkers (8033,13739,111037).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily, or approximately 4 cups of caffeinated coffee, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,105310), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453,105310), or cardiovascular disease (CVD) in general (37805,98806,104882). However, some observational research suggests that drinking at least 1 cup of coffee per week is associated with a 40% increased risk of atrial fibrillation, with the highest incidence of atrial fibrillation occurring in adults consuming at least 6 cups daily (111042). Also, one large, observational study found a J-shaped association between regular coffee consumption and the risk of developing acute coronary syndromes. Moderate consumption of less than 300 mL daily (about 1.3 cups) was associated with a lower risk of developing acute coronary syndromes, whereas regular consumption of 300 mL daily or more was associated with an increased risk (11318). In contrast, other observational research in people without a history of CVD has found that drinking more than 6 cups of coffee daily does not appear to be associated with an increased risk of developing coronary heart disease (14343). Also, in people with a history of CVD, population research has found that coffee consumption is associated with a reduction in CVD-related mortality (97373,97374,103997,103998,104594,104595,104882,105308,105311,105313,105314); however not all research agrees (112735). However, in current smokers with a history of acute coronary syndrome, consuming more than 3 cups of coffee daily is associated with more than a two-fold increased risk of overall mortality (105313). Also, population research in patients with severe hypertension, but not mild hypertension, suggests that drinking at least two cups of coffee daily is associated with a 2-fold increase in CVD mortality compared with non-coffee drinkers (111027).
Caffeine intake may pose a greater cardiovascular risk to subjects who are not regular caffeine users. Population research suggests that drinking caffeinated coffee might trigger a myocardial infarction (MI) in some people. People who drink one or fewer cups of coffee daily and are sedentary and have multiple risk factors for heart disease have a significantly increased risk of MI within an hour after drinking coffee. However, this risk appears diminished in people who routinely consume greater amounts of coffee on a daily basis (14497). In another population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects who didn't regularly drink coffee (38102).
Boiled coffee that is prepared without a filter appears to increase serum cholesterol and triglyceride levels (1353,4200,8036,8539). Drinking one liter of strong, unfiltered coffee daily for two weeks can raise serum cholesterol by 10% and serum triglycerides by 36% (1353). Tell patients to use coffee filters since these effects do not seem to occur with filtered coffee (4200,8036,8539).
Coffee can adversely affect homocysteine levels. Higher homocysteine levels have been associated with CVD. One liter of unfiltered strong coffee daily for two weeks can increase plasma homocysteine levels by 10% (1353). The same amount of filtered strong coffee appears to raise plasma homocysteine levels by 20%, although there have been no head-to-head comparisons of filtered versus unfiltered coffee (3344).
Dermatologic ...Some researchers suggest symptoms such as flushed face occur during caffeine withdrawal. However, withdrawal symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Endocrine
...Orally, excessive doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734).
Other symptoms include hypokalemia and respiratory alkalosis (11832,11838,13735).
Some evidence shows that caffeine, a constituent of coffee, is associated with fibrocystic breast disease, breast cancer, and endometriosis in females; however, this is controversial since findings are conflicting (8043). Restricting caffeine intake in patients with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). Population research suggests that exposure to caffeine is not associated with an increased risk of endometriosis (91035).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as coffee, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal
...Orally, coffee containing caffeine can cause gastric distress and vomiting.
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). There is also some evidence that consumption of three or more cups of caffeinated coffee might increase the risk of Helicobacter pylori infection (8034).
Caffeine withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Rectally, at least 5 cases of proctocolitis related to the use of coffee enemas have been reported (96868,103273).
Genitourinary ...The caffeine found in coffee is a known diuretic and may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In males with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily has been associated with increased severity of premenstrual syndrome (38177).
Hematologic
...There is evidence that coffee containing caffeine shortens whole blood fibrinolysis time (8030).
Rectally, coffee enemas have been linked to severe electrolyte abnormalities leading to death (3026,3347,3349,6652)
Hepatic ...Boiled coffee that is prepared without a filter appears to increase liver aminotransferase enzymes. Tell patients to use coffee filters since these effects do not seem to occur with filtered coffee (8539).
Immunologic
...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Rectally, coffee enemas have been linked to septicemia leading to death (3026,3347,3349,6652).
Musculoskeletal
...Orally, there is preliminary evidence that use of greater than four cups of coffee daily can increase the risk of rheumatoid factor positive rheumatoid arthritis, but this association has not been confirmed (6482).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg daily does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317,98806).
Caffeine withdrawal symptoms, such as muscle tension and muscle pains, have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Neurologic/CNS
...Orally, coffee containing caffeine can cause agitation, headache, insomnia, and nervousness, .
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,11832,11838,13734,13735).
Combining ephedra with coffee can increase the risk of adverse effects, due to the caffeine contained in coffee. Jitteriness, seizures, and temporary loss of consciousness have been associated with the combined use of ephedra and caffeine (2729).
Some researchers suggest that symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nervousness, and restlessness have also been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Ocular/Otic ...Orally, coffee containing caffeine can cause ringing in the ears. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). Coffee containing caffeine also increases intraocular pressure, starting about 30 minutes after consumption and persisting for at least 90 minutes. Decaffeinated coffee does not appear to affect intraocular pressure (8540).
Oncologic
...The association between consumption of coffee and pancreatic cancer is controversial.
Coffee may increase the incidence of some types of pancreatic cancers, but it may decrease other types (8535,8536,8537). Some studies do not support this association, especially in patients that have never smoked (8038,8040,93878,103999). Patients who are at risk of pancreatic cancer (pancreatitis) should limit their consumption of coffee.
People who consume 2-4 or more cups of caffeinated coffee dail might have a significantly increased risk of developing lung cancer (13191,90177). But drinking decaffeinated coffee seems to be associated with a decreased risk of lung cancer (13191).
Coffee consumption has also been associated at various times with an increased risk of breast cancer, bladder cancer, colon cancer, and other types of cancers, but there's no good evidence that coffee consumption increases cancer risk (8039,8040,8041). Most human studies that have examined caffeine or coffee intake have found that they do not play a role in the development of various cancers, including breast or most gastric cancers (91054,91076,98806). However, drinking caffeinated coffee might increase the risk of gastric cardia cancer (91076).
Psychiatric ...Orally, coffee containing caffeine can cause anxiety. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). With chronic use, especially in large amounts, habituation, tolerance, and psychological dependence can occur (3719). Other researchers suggest symptoms such as depressed mood are typical of caffeine withdrawal (13738). However, withdrawal symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...Caffeine withdrawal symptoms such as rhinorrhea have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Renal ...Orally, coffee containing caffeine can cause diuresis. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734).
General
...Orally, dill is well tolerated when used in amounts commonly found in foods (4912).
Dill seems to be well tolerated when used as medicine (12). However, a thorough evaluation of safety outcomes has not been conducted. Some people are allergic to dill (47751,47753).
Topically, photodermatosis is possible after contact with juice from freshly harvested plants (19). Dill can also cause contact dermatitis (19,47767,47773).
Dermatologic ...Topically, photodermatosis is possible after contact with juice from freshly harvested plants (19).
Immunologic
...Orally, there are case reports of individuals allergic to dill (47751,47753).
In one case, symptoms, including swelling around the eyes, itching, rash, and chapped lips, occurred after a delay of 12 hours (47751). In another case, immediate symptoms of anaphylaxis, as well as vomiting and diarrhea, occurred following intake and inhalation of foods cooked with dill (47753).
Topically, dill has resulted in contact dermatitis (47767,47773).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, the whole fruit, as well as the seed, fruit, and leaf extracts, seem to be well tolerated.
Topically, grape seed extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, dry mouth, dyspepsia, headache, joint pain, and nausea.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to grape skin has been reported.
Dermatologic ...Orally, mild hair thinning has been reported in a patient taking a specific grape leaf extract AS195 KG) (2538). Urticaria (hives) has also been reported with this same extract (53206). Cases of contact dermatitis have been reported in grape workers, including those working in California vineyards (53270,53272,53275).
Gastrointestinal ...Orally, abdominal pain and nausea have been reported with use of grape seed extract, but these effects typically occur at rates similar to placebo (9182,13162). In a case report of a 57-year-old man, intermittent nausea, vomiting, and diarrhea occurred over a 10-day period and improved once grape seed extract was stopped (96764). Gastrointestinal adverse effects have also been reported with use of a different grape seed extract (Entelon, Hanlim Pharm). However, the specific types of gastrointestinal effects were not described (100954). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused flatulence, mild constipation, gastrointestinal discomfort, diarrhea, dyspepsia, dry mouth, and retching (2538,52985,53206). Diarrhea, gastrointestinal distress, indigestion, and aversion to taste have been reported with use of Concord grape juice (52972,53166,53175,53181,53199). Loose stools have been reported in a clinical trial of grape pomace (99270). Bowel obstruction caused by intact grapes and grape seeds has been described in case reports (53241,53284,53278). Excessive consumption of grapes, dried grapes, raisins, or sultanas might cause diarrhea due to laxative effects (4201).
Hematologic ...Orally, one case of leg hematoma following a minor trauma was reported in a person using grape leaf extract (2538). Also, one case of bruising was reported in a person drinking Concord grape juice daily for 2 weeks (52972).
Immunologic ...Orally, there is one report of an anaphylactic reaction to oral grape skin extract, which included urticaria and angioedema (4073).
Musculoskeletal ...Orally, musculoskeletal disorders, including back pain, have been reported with use of a specific grape leaf extract AS195 KG) (2538,53206). Joint pain and lumbago have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (91541).
Neurologic/CNS ...Orally, headache has been reported with use of grape seed extract, but this effect occurs at rates similar to placebo (9182,91541). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused dizziness, tiredness, headache, and sleep problems (2538,53206). As a class, nervous system adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of adverse neurologic effects were not described (100954).
Ocular/Otic ...Orally, ocular adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of ocular adverse effects were not described (100954).
Pulmonary/Respiratory ...Orally, nasopharyngitis and oropharyngeal pain have been reported with use of a specific grape leaf extract AS195 KG) (53206). Sore throat, cough, allergic rhinitis, and nasopharyngitis have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (9182,91541). One case report describes a 16-year-old female who developed increased levels of immunoglobulin E (IgE) following skin-prick exposure to grape vine pollen, as well as positive test responses following bronchial and conjunctival provocation (53301). Reduced forced vital capacity has been described in California grape workers (53080,53081). Occupational eosinophilic lung was diagnosed in a grape grower with a history of asthma. Respiratory exposure to sulfites in grape was implicated as the cause of the adverse reaction (53285).
Other
...Orally, grape products can cause adverse effects due to contamination with pesticides or mycotoxins.
Some evidence has shown that pesticides used in vineyards may remain on grape surfaces post-harvesting. For example, the fungicide folpet sprayed on grapevines has been shown to remain on the grape surface. Although there was minimal penetration of the epicuticular wax, it showed high resistance to washing (52935). Carbaryl has been identified in over 58% of juice samples collected in Canada. This pesticide reportedly occurred more frequently in grape than in other juices. However, estimates of short-term intake were below proposed acute reference doses (53003).
Ochratoxin A is a mycotoxin that is suspected to be nephrotoxic, teratogenic, hepatotoxic and carcinogenic and has been identified in grape juice, frozen grape pulps, and red and white wine sold in Rio de Janeiro, Brazil. However, the highest levels identified in grape products were lower than the established virtually safe dose of 5 ng/kg of body weight daily (53010,53004). Ochratoxin A has also been identified in red, but not white, grape juice marketed in Switzerland, Canada, and the U.S. (53292,53020).
General
...Orally, niacin is well tolerated in the amounts found in foods.
It is also generally well tolerated in prescription doses when monitored by a healthcare provider.
Most Common Adverse Effects:
Orally: Flushing, gastrointestinal complaints (abdominal pain, constipation, diarrhea, heartburn, nausea, vomiting), and elevated liver enzymes.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, myopathy, thrombocytopenia, and vision changes.
Cardiovascular
...Orally, flushing is a common dose-related adverse reaction to niacin.
A large meta-analysis of clinical studies shows that up to 70% of patients may experience flushing (96211). Although flushing can occur with doses of niacin as low as 30 mg daily, it is more common with the larger doses used for treatment of dyslipidemia. The flushing reaction is due to prostaglandin-induced blood vessel dilation and can also include symptoms of burning, tingling, urticaria, erythema, pain, and itching of the face, arms, and chest. There may also be increased intracranial blood flow and headache (4889,26089,93341,104933). Onset is highly variable and ranges from within 30 minutes to as long as 6 weeks after the initial dose (6243). Flushing can be minimized via various strategies, including taking doses with meals, slow dose titration, using extended release formulations, pretreating with non-steroidal anti-inflammatory drugs, taking regular-release niacin with meals, or taking the sustained-release product at bedtime (4852,4853,4854,4857,4858,25922,26073,26084). Flushing often diminishes with continued use but can recur when niacin is restarted after missed doses (4863,6243,26081). The vasodilating effects of niacin can also cause hypotension, dizziness, tachycardia, arrhythmias, syncope, and vasovagal attacks, especially in patients who are already taking antihypertensive drugs (4863,12033,93341,110494).
High doses of niacin can raise homocysteine levels. A 17% increase has been reported with 1 gram daily and a 55% increased has been reported with 3 grams daily. Elevated homocysteine levels are an independent risk factor for cardiovascular disease (490); however, the clinical significance of this effect is unknown. A large-scale study (AIM-HIGH) found that patients receiving extended-release niacin (Niaspan) 1500-2000 mg daily with a statin had an over two-fold increased risk of ischemic stroke (1.6%) when compared with those receiving only simvastatin (0.7%). However, when the risk was adjusted for confounding factors, niacin was not found to be associated with increased stroke risk (17627,93354). A meta-analysis of three clinical trials conducted in approximately 29,000 patients showed a higher risk of mortality in patients taking niacin in addition to a statin when compared with a statin alone. However, with a p-value of 0.05 and confidence interval including 1, the validity of this finding remains unclear (97308).
Endocrine
...Orally, niacin can impair glucose tolerance in a dose-dependent manner.
Dosages of 3-4 grams daily appear to increase blood glucose in patients with or without diabetes, while dosages of 1.5 grams daily or less have minimal effects (12033). Niacin is thought to impair glucose tolerance by increasing insulin resistance or increasing hepatic output of glucose (4863,11692,11693). In patients with diabetes, niacin 4.5 grams daily for 5 weeks has been associated with an average 16% increase in plasma glucose and 21% increase in glycated hemoglobin (HbA1C) (4860). Up to 35% of patients with diabetes may need to increase the dose or number of hypoglycemic agents when niacin is started (4458,4860,4863,11689,12033). Occasionally, severe hyperglycemia requiring hospitalization can occur (11693). In patients with impaired fasting glucose levels, niacin may also increase fasting blood glucose, and adding colesevelam might attenuate this effect (93343).
Although patients without diabetes seem to only experience small and clinically insignificant increases in glucose (4458), niacin might increase their risk of developing diabetes. A meta-analysis of clinical research involving over 26,000 patients shows that using niacin over 5 years is associated with increased prevalence of new onset type 2 diabetes at a rate of 1 additional case of diabetes for every 43 patients treated with niacin (96207). This finding is limited because the individual trials were not designed to assess diabetes risk and the analysis could not be adjusted for confounding factors like obesity. One small clinical study shows that taking extended-release niacin with ezetimibe/simvastatin does not increase the risk of a new diagnosis of diabetes or need for antidiabetic medication when compared with ezetimibe/simvastatin alone after 16 months (93344). This may indicate that the increased risk of developing diabetes is associated with niacin use for more than 16 months.
Niacin therapy has also been linked with hypothyroidism and its associated alterations in thyroid hormone and binding globulin tests (such as decreased total serum thyroxine, increased triiodothyronine, decreased thyroxine-binding globulin levels, and increased triiodothyronine uptake) (25916,25925,25926,25928).
Gastrointestinal ...Orally, large doses of niacin can cause gastrointestinal disturbances including nausea, vomiting, bloating, heartburn, abdominal pain, anorexia, diarrhea, constipation, and activation of peptic ulcers (4458,4863,12033,26083,93341,96211). These effects may be reduced by taking the drug with meals or antacid, and usually disappear within two weeks of continued therapy (4851,26094). Gastrointestinal effects may be more common with time-release preparations of niacin (11691).
Hematologic ...Orally, sustained-release niacin has been associated with cases of reversible coagulopathy, mild eosinophilia, and decreased platelet counts (4818,25915,26097,93340). Also, there have been reports of patients who developed leukopenia while taking niacin for the treatment of hypercholesterolemia (25916).
Hepatic ...Orally, niacin is associated with elevated liver function tests and jaundice, especially with doses of 3 grams/day or more, and when doses are rapidly increased (4458,4863,6243). The risk of hepatotoxicity appears to be higher with slow-release and extended-release products (4855,4856,4863,6243,11691,12026,12033,93342). Niacin should be discontinued if liver function tests rise to three times the upper limit of normal (4863). There are rare cases of severe hepatotoxicity with fulminant hepatitis and encephalopathy due to niacin (4863,6243,11691). In one case, a patient taking extended-release niacin 2500 mg daily for 15 years developed decompensating cirrhosis and was diagnosed with chronic, toxic, metabolic liver injury. Despite medical intervention, the patient died (113553). Also, there is at least one case of niacin-induced coagulopathy resulting from liver injury without liver enzyme changes (93340).
Musculoskeletal ...Orally, niacin has been associated with elevated creatine kinase levels (4818,4888). Also, several cases of niacin-induced myopathy have been reported (26100,26111). Concomitant administration of niacin and HMG-CoA reductase inhibitors may increase the risk of myopathy and rhabdomyolysis (14508,25918,26111); patients should be monitored closely.
Neurologic/CNS ...Orally, high-dose niacin has been associated with cases of neuropsychiatric adverse events such as extreme pain and psychosis. Two 65-year-old males taking niacin orally for 5 months for the treatment of dyslipidemias developed severe dental and gingival pain. The pain was relieved by the discontinuation of niacin. The pain was thought to be due to inflammation and pain referral to the teeth (4862). In one case report, a 52-year-old male with no history of psychiatric illness who initially complained of hot flushes when taking niacin 500 mg daily, presented with an acute psychotic episode involving mania after niacin was increased to 1000 mg daily (93350).
Ocular/Otic ...Orally, chronic use of large amounts of niacin has been associated with dry eyes, toxic amblyopia, blurred vision, eyelid swelling, eyelid discoloration, loss of eyebrows and eyelashes, proptosis, keratitis, macular edema, and cystic maculopathy, which appear to be dose-dependent and reversible (4863,6243,26112).
General
...Orally, riboflavin is generally well tolerated.
Most Common Adverse Effects:
Orally: Dose-related nausea and urine discoloration.
Gastrointestinal ...Orally, riboflavin has been associated with rare diarrhea and dose-related nausea (1398,71483). In one clinical study, one subject out of 28 reported having diarrhea two weeks after starting riboflavin 400 mg daily (1398).
Genitourinary ...Orally, high doses of riboflavin can cause bright yellow urine. Furthermore, in one clinical study, one subject out of 28 reported polyuria two weeks after starting riboflavin 400 mg daily (1398,3094).
General
...Orally and parenterally, thiamine is generally well tolerated.
Serious Adverse Effects (Rare):
Parenterally: Hypersensitivity reactions including angioedema and anaphylaxis.
Immunologic
...Orally, thiamine might rarely cause dermatitis and other allergic reactions.
Parenterally, thiamine can cause anaphylactoid and hypersensitivity reactions, but this is also rare (<0.1%). Reported symptoms and events include feelings of warmth, tingling, pruritus, urticaria, tightness of the throat, cyanosis, respiratory distress, gastrointestinal bleeding, pulmonary edema, angioedema, hypotension, and death (15,35585,105445).
In one case report, a 46-year-old female presented with systemic allergic dermatitis after applying a specific product (Inzitan, containing lidocaine, dexamethasone, cyanocobalamin and thiamine) topically by iontophoresis; the allergic reaction was attributed to thiamine (91170).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Daily doses of 100 mg or less are unlikely to cause these problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).