Each capsule contains: Eyebright aerial part 4:1 powdered extract (euphrasia officinalis) 100 mg • Bilberry fruit 5:1 powdered extract (vaccinium myrtillus) 50 mg • Carrot juice powdered 25 mg • Rutin powdered extract 25 mg • FloraGLO brand 40 mg: Lutein (from tagetes erecta, marigold flowers, 5% [2 mg]), Zeaxanthin (88 mcg) • Quercetin powdered extract 25 mg • Lutein powered extract 2 mg • Multi-Anthocyanidins powdered fruit extract 0.75 mg. Other Ingredients: Gelatin, Purified Water, Rice Powder, Vegetable Oil, Starch, Sucrose, Mixed Tocopherols (vitamin E), Rosemary Extract, Citric Acid. Contains: Soybeans.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Eye Factors with 2 mg Lutein. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Eye Factors with 2 mg Lutein. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Bilberry has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. Bilberry fruit extracts have been used with apparent safety in clinical trials at a dose of up to 160 mg daily for up to 6 months (39,40,8139,9739,14280,35472,35510,35512,103190,104192,104195). A higher bilberry extract dose of 1.4 grams daily has been used with apparent safety for up to 4 weeks (104194). Whole bilberries or bilberry juice have also been consumed with apparent safety in quantities of 100-160 grams daily for up to 35 days (35463,91506).
POSSIBLY UNSAFE ...when the leaves are used orally in high doses or for a prolonged period. Death can occur with chronic use of 1.5 gram/kg daily (2).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods.
However, there is insufficient reliable information available about the safety of bilberry when used in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Carrot has been used safely in doses of approximately 100 grams three times daily for up to 4 weeks (96308). There is insufficient reliable information available about the safety of carrot when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY UNSAFE
when carrot juices are used excessively in nursing bottles for small children.
Excessive use of carrot juice may cause carotenemia and dental caries (25817).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
There is insufficient reliable information available about the safety of carrot when used in medicinal amounts during pregnancy and lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Eyebright is listed by the Council of Europe as a natural source of food flavoring (4).
POSSIBLY UNSAFE ...when applied into the eyes. Avoid using due to hygienic concerns; eyebright ophthalmic products may be subject to contamination (8,11). There is insufficient reliable information available about the safety of eyebright when used orally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Consuming up to 20 mg of lutein daily from both dietary and supplemental sources appears to be safe (3219,3220,60167). Lutein supplements have been safely used in clinical trials at doses of up to 20 mg daily for up to 10 years (11798,60133,60177,94703,94701,100986,104570,107107,108615,109763).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
A specific product containing lutein (LUTEINofta, SOOFT Italia SpA) has been used with apparent safety in infants at a dose of 0.14 mg daily for 36 weeks (91163).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately in amounts found in foods.
The high end of dietary lutein intake ranges from 6.9-11.7 mg/day (3219,3220).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Quercetin has been used with apparent safety in doses up to 1 gram daily for up to 12 weeks (481,1998,1999,16418,16429,16430,16431,96774,96775,96782)(99237,102539,102540,102541,104229,104679,106498,106499,107450,109620)(109621). ...when used intravenously and appropriately. Quercetin has been used with apparent safety in doses less than 945 mg/m2. Higher doses have been reported to cause nephrotoxicity (9564,16418). There is insufficient reliable information available about the safety of quercetin when used topically.
POSSIBLY UNSAFE ...when used intravenously in large amounts. Doses greater than 945 mg/m2 have been reported to cause nephrotoxicity (9564,16418).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts found in foods, such as fruits and vegetables.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Rutin has been used with apparent safety at doses of up to 600 mg daily for up to 12 weeks (6252,24560,91104,96766,105298). ...when applied topically as a cream (92236,99258,99260).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the use of supplemental rutin; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately in doses of up to 2 mg daily. Zeaxanthin supplements have been safely used in clinical trials at doses of up to 2 mg daily for up to 10 years (94701,94702,94703,108615).
POSSIBLY SAFE ...when used orally and appropriately in amounts greater than 2 mg daily. Zeaxanthin supplements in doses of 8-10 mg daily for up to 12 months have been used with apparent safety in clinical trials (60175,60245).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
A specific product containing zeaxanthin (LUTEINofta, SOOFT Italia SpA) has been used with apparent safety in infants at a dose of 0.0006 mg daily for 36 weeks (91163). There is insufficient reliable information available about the safety of zeaxanthin at higher doses or in older children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately in amounts found in foods.
Zeaxanthin is found in breast milk and levels correlate with infant status (106365). There is insufficient reliable information available about the safety of supplemental zeaxanthin.
Below is general information about the interactions of the known ingredients contained in the product Eye Factors with 2 mg Lutein. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, bilberry fruit extract might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, bilberry leaf or fruit extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research suggests that bilberry leaf extract might have blood glucose-lowering activity (1264). Also, one small clinical trial in patients with type 2 diabetes shows that taking bilberry fruit extract 470 mg as a single dose prior to an oral glucose tolerance test lowers plasma glucose levels when compared with placebo (91507).
|
Theoretically, bilberry fruit extract might decrease levels of drugs metabolized by CYP2E1.
Animal research shows that exposure to small concentrations of bilberry extract in drinking water for around one month increased CYP2E1 activity by 31%. However, exposure over a 2-month period did not increase CYP2E1 activity (103191). This effect has not been reported in humans.
|
Theoretically, bilberry fruit extract might reduce the efficacy of erlotinib.
In vitro research suggests that bilberry fruit extract and its constituents, delphinidin and delphinidin-3-O-glucoside, inhibit the activity of erlotinib (97031). This interaction has not been reported in humans.
|
Theoretically, eyebright might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research suggests that eyebright lowers blood glucose levels (49393).
|
Theoretically, concomitant use of quercetin and antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research suggests that a combination of quercetin, myricetin, and chlorogenic acid reduce levels of fasting glucose in patients with type 2 diabetes, including those already taking antidiabetes agents (96779). The effect of quercetin alone is unknown. |
Theoretically, taking quercetin with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, concomitant use might increase the levels and adverse effects of cyclosporine.
A small study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine, possibly due to inhibition of p-glycoprotein or cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporin (16434). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C8 substrates.
|
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C9 substrates.
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac, a CYP2C9 substrate, increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5% (97931). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar), a substrate of CYP2C9 (100968). Furthermore, laboratory research shows that quercetin inhibits CYP2C9 (15549,16433). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2D6 substrates.
|
Theoretically, concomitant use might alter the effects and adverse effects of CYP3A4 substrates.
A small clinical study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine (Neoral, Sandimmune), a substrate of CYP3A4 (16434). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) and quetiapine (Seroquel), substrates of CYP3A4 (100968,104228). Other laboratory research also shows that quercetin inhibits CYP3A4 (15549,16433,16435). However, one clinical study shows that quercetin can increase the metabolism of midazolam, a substrate of CYP3A4, and decrease serum concentrations of midazolam by about 24% in some healthy individuals, suggesting possible induction of CYP3A4 (91573).
|
Theoretically, concomitant use might increase the levels and adverse effects of diclofenac.
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5%. This is thought to be due to inhibition of CYP2C9 by quercetin (97931). |
Theoretically, concomitant use might increase the effects and adverse effects of losartan and decrease the effects of its active metabolite.
Animal research shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) while decreasing plasma levels of losartan's active metabolite. This metabolite, which is around 10-fold more potent than losartan, is the result of cytochrome P450 (CYP) 2C9- and CYP3A4-mediated transformation of losartan. Additionally, in vitro research shows that quercetin may inhibit P-glycoprotein-mediated efflux of losartan from the intestines, resulting in increased absorption of losartan (100968). These results suggest that concomitant use of quercetin and losartan might increase systemic exposure to losartan while also decreasing plasma concentrations of losartan's active and more potent metabolite. |
Theoretically, concomitant use might decrease the levels and effects of midazolam.
A small clinical study in healthy volunteers shows that quercetin can increase the metabolism of midazolam, with a decrease in AUC of about 24% (91573). |
Theoretically, quercetin might increase the effects and adverse effects of mitoxantrone.
In vitro research shows that quercetin increases the intracellular accumulation and cytotoxicity of mitoxantrone, possibly through inhibition of breast cancer resistance protein (BCRP), of which mitoxantrone is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of OAT1 substrates.
In vitro research shows that quercetin is a strong non-competitive inhibitor of OAT1, with half-maximal inhibitory concentration (IC50) values less than 10 mcM (104454). So far, this interaction has not been reported in humans. |
Theoretically, concomitant use might increase the effects and adverse effects of OAT3 substrates.
|
Theoretically, concomitant use might increase the effects and adverse effects of OATP substrates.
In vitro evidence shows that quercetin can inhibit organic anion-transporting peptide (OATP) 1B1-mediated uptake of estrone-3-sulfate and pravastatin (91581). Furthermore, clinical research in healthy males shows that intake of quercetin along with pravastatin increases the AUC of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581). |
Theoretically, concomitant use might alter the effects and adverse effects of P-glycoprotein substrates.
There is preliminary evidence that quercetin inhibits the gastrointestinal P-glycoprotein efflux pump, which might increase the bioavailability and serum levels of drugs transported by the pump (16433,16434,16435,100968,104228). A small study in healthy volunteers reported that pretreatment with quercetin increased bioavailability and plasma levels after a single dose of cyclosporine (Neoral, Sandimmune) (16434). Also, two small studies have shown that quercetin might decrease the absorption of talinolol, a substrate transported by the gastrointestinal P-glycoprotein efflux pump (91579,91580). However, in another small study, several days of quercetin treatment did not significantly affect the pharmacokinetics of saquinavir (Invirase) (16433). The reason for these discrepancies is not entirely clear (91580). Until more is known, use quercetin cautiously in combination with P-glycoprotein substrates. |
Theoretically, concomitant use might increase the effects and adverse effects of pravastatin.
In vitro evidence shows that quercetin can inhibit OATP 1B1-mediated uptake of pravastatin (91581). Also, preliminary clinical research in healthy males shows that intake of quercetin along with pravastatin increases the maximum concentration of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581).
|
Theoretically, quercetin might increase the effects and adverse effects of prazosin.
In vitro research shows that quercetin inhibits the transcellular efflux of prazosin, possibly through inhibition of breast cancer resistance protein (BCRP), of which prazosin is a substrate. BCRP is an ATP-binding cassette efflux transporter in the intestines, kidneys, and liver (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of quetiapine.
Animal research shows that pretreatment with quercetin can increase plasma levels of quetiapine and prolong its clearance, possibly due to inhibition of cytochrome P450 3A4 (CYP3A4) by quercetin. Additionally, the brain-to-plasma ratio of quetiapine concentrations increased, possibly due to inhibition of P-glycoprotein at the blood-brain barrier (104228). This interaction has not been reported in humans.
|
Theoretically, concomitant use might inhibit the effects of quinolone antibiotics.
In vitro, quercetin binds to the DNA gyrase site on bacteria (481), which may interfere with the activity of quinolone antibiotics.
|
Theoretically, quercetin might increase the effects and adverse effects of sulfasalazine.
Animal research shows that quercetin increases the maximum serum concentration (Cmax) and area under the curve (AUC) of sulfasalazine, possibly through inhibition of breast cancer resistance protein (BCRP), of which sulfasalazine is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, quercetin may increase the risk of bleeding if used with warfarin.
Animal and in vitro studies show that quercetin might increase serum levels of warfarin (17213,109619). Quercetin and warfarin have the same human serum albumin (HSA) binding site, and in vitro research shows that quercetin has stronger affinity for the HSA binding site and can theoretically displace warfarin, causing higher serum levels of warfarin (17213). Animal research shows that taking quercetin for 2 weeks before initiating warfarin increases the maximum serum level of warfarin by 30%, the half-life by 10%, and the overall exposure by 63% when compared with control. Concomitant administration of quercetin and warfarin, without quercetin pre-treatment, also increased these measures, but to a lesser degree. Researchers theorize that inhibition of CYP3A4 by quercetin may explain these effects (109619). So far, this interaction has not been reported in humans.
|
Theoretically, taking rutin with antidiabetes drugs might increase the risk of hypoglycemia.
Animal research suggests that rutin has hypoglycemic effects (105299).
|
Theoretically, taking zeaxanthin with antidiabetes drugs might increase the risk of hypoglycemia.
|
Below is general information about the adverse effects of the known ingredients contained in the product Eye Factors with 2 mg Lutein. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bilberry fruit, juice, and extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Dark-colored stools, flatulence, and gastrointestinal discomfort.
Gastrointestinal
...In one small clinical trial, mild-to-moderate flatulence was reported in 33% of patients taking sieved bilberries and concentrated bilberry juice (91506).
However, the patients in this study had ulcerative colitis, and the study lacked a control group, limiting the validity of this finding. In another small clinical study of males with age-related cognitive impairment, temporary adverse gastrointestinal (GI) effects were reported in 13% of patients drinking a combination of bilberry and grape juice. However, the adverse GI effect rate was identical in patients drinking a placebo juice (110641). A post-marketing surveillance report of 2295 patients using bilberry extract (Tegens) found that 1% of patients complained of GI discomfort and less than 1% experienced nausea or heartburn (35500).
Theoretically, fresh bilberry fruit may have laxative effects. One clinical trial noted an increased frequency of bowel movements following the administration of a combination formulation containing aerial agrimony parts, cinnamon quills, powdered bilberry fruit, and slippery elm bark (35462). It is unclear if these effects were due to bilberry, other ingredients, or the combination.
Other ...Orally, bilberry may cause discoloration of feces and the tongue. In one study, a dark-bluish to black discoloration of both the feces and the tongue was observed following consumption of sieved bilberries and concentrated bilberry juice. In one patient, a slight discoloration of the teeth has also been observed (91506). In another study, 50% of patients reported dark green stools after taking bilberry extract 700 mg twice daily for 4 weeks (104194).
General
...Orally, carrot is well tolerated when consumed as a food.
It also seems to be generally well-tolerated when consumed as a medicine. Some people are allergic to carrot; allergic symptoms include anaphylactic, cutaneous, respiratory, and gastrointestinal reactions such as hives, swelling of the larynx, asthma, or diarrhea (25820,93606,106560). In infants, excessive consumption of carrot products in nursing bottles has been reported to cause extensive caries in the primary teeth (25817).
Topically, carrot has been associated with a case of phytophotodermatitis (101716).
Dental ...Orally, feeding carrot juice to infants, with or without sugar- or acid-containing beverages, has been reported to damage teeth and cause dental caries (25817).
Dermatologic ...Orally, excessive consumption of carrots or carrot-containing products can cause yellowing of the skin, which results from increased beta-carotene levels in the blood (25817). Carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306).
Gastrointestinal ...Orally, carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods can include gastrointestinal symptoms, such as diarrhea (25820).
Immunologic
...Orally, carrots may cause allergic reactions in some patients (25820,96306,106560).
Allergic responses to carrot-containing foods can include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306). For one patient, treatment of skin lesions resolved after a month of oral antihistamines and topical steroids, and avoiding further contact with carrot (96306). Allergic responses to carrot-containing foods can also include gastrointestinal symptoms, such as diarrhea, and respiratory symptoms, such as swelling of the larynx or asthma (25820). In one case, a patient with a history of allergic rhinitis and asthma who had been successfully treated with subcutaneous immunotherapy and was tolerant of consumption of raw and cooked carrots developed rhinoconjunctivitis when handling carrots. Inhalation of dust particles and aerosols produced by food processing activities and containing allergens from the peel and pulp of carrots is thought to have sensitized the airway, producing a distinct form of respiratory food allergy in which there are typically no symptoms with ingestion (106560).
Topically, a female runner developed phytophotodermatitis, which was considered possibly associated with the inclusion of carrot in a sunscreen (Yes To Carrots Daily Facial Moisturizer with SPF 15; Yes to, Inc.) (101716).
Psychiatric ...Compulsive carrot eating is a rare condition in which the patient craves carrots. According to one case report, withdrawal symptoms include nervousness, cravings, insomnia, water brash, and irritability (25821).
General ...Orally, eyebright is generally well tolerated when used in food amounts. Topically, eyebright might be unsafe due to the potential for contamination.
Gastrointestinal ...Orally, eyebright has been reported to cause nausea and constipation (4).
Genitourinary ...Orally, eyebright has been reported to cause polyuria (4).
Neurologic/CNS ...Orally, eyebright has been reported to cause confusion and headache (4).
Ocular/Otic ...Topically, eyebright has been reported to cause increased ocular pressure, lacrimation, pruritus, redness, swelling of eyelid margins, vision changes, and photophobia when applied to the eyes (4). Ophthalmic eyebright products should be used with caution due to the potential for contamination (8,11).
Pulmonary/Respiratory ...Orally, eyebright has been reported to cause cough, dyspnea, and nasal congestion (4).
General ...Orally, dietary and supplemental lutein is generally well tolerated. Doses up to 20 mg daily have not resulted in adverse effects.
General ...Orally and intravenously, quercetin seems to be well tolerated in appropriate doses. Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Intravenous administration of quercetin is associated with nausea and vomiting (9564).
Neurologic/CNS ...Orally, quercetin may cause headache and tingling of the extremities (481,111500). Intravenously, quercetin may cause pain at the injection site. Injection pain can be minimized by premedicating patients with 10 mg of morphine and administering amounts greater than 945 mg/m2 over 5 minutes (9564). In addition, intravenous administration of quercetin is associated with flushing and sweating (9564).
Pulmonary/Respiratory ...Intravenous administration of quercetin at doses as high as 2000 mg/m2 is associated with dyspnea that may persist for up to 5 minutes (9564).
Renal ...Intravenously, nephrotoxicity has been reported with quercetin in amounts greater than 945 mg/m2 (9563,9564,70304).
General ...Orally, rutin is generally well tolerated.
Dermatologic ...Orally, rutin may cause flushing and rashes in some people (313).
Gastrointestinal ...Orally, rutin may cause gastrointestinal disturbance in some people (313).
Neurologic/CNS ...Orally, rutin may cause headache in some people (313).
General ...Orally, dietary and supplemental zeaxanthin are generally well tolerated. No adverse effects have been reported in clinical research.