Ingredients | Amount Per Serving |
---|---|
Proprietary Blend
|
3900 mg |
(husks)
|
|
( acidophilus )
|
|
(leaf)
|
|
(Aloe )
(leaf)
|
|
(root)
|
|
(root)
|
Hydroxypropyl Methylcellulose, Microcrystalline Cellulose, Magnesium Stearate, Silicon Dioxide (Alt. Name: SiO2), purified Water
Below is general information about the effectiveness of the known ingredients contained in the product Western Herbal and Nutrition. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Western Herbal and Nutrition. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when aloe gel is used topically and appropriately. Aloe gel-containing formulations have been safely applied in clinical trials (101,11982,12096,12098,12159,12160,12163,12164,17418)(90123,90124,90127,90128,90129,90131,97320,98816,103305). When included in topical cosmetics, the Cosmetic Ingredient Review Expert Panel concluded that aloe-derived anthraquinone levels should not exceed 50 ppm (90122).
POSSIBLY SAFE ...when aloe gel is used orally and appropriately, short-term. Aloe gel has been safely used in a dose of 15 mL daily for up to 42 days or 100 mL of a 50% solution twice daily for up to 4 weeks (11984,12164). Also, a specific aloe gel complex (Aloe QDM complex, Univera Inc.) has been safely used at a dose of approximately 600 mg daily for up to 8 weeks (90121). ...when aloe extract is used orally and appropriately, short-term. Aloe extract has been used with apparent safety in a dose of 500 mg daily for one month (101579). Also, an aloe extract enriched in aloe sterols has been used with apparent safety in a dose of 500 mg daily for 12 weeks (101577).
POSSIBLY UNSAFE ...when aloe latex is used orally. There is some evidence that anthraquinones in aloe latex are carcinogenic or promote tumor growth, although data are conflicting (6138,16387,16388,91596,91597). In 2002, the US FDA banned the use of aloe latex in laxative products due to the lack of safety data (8229). ...when aloe whole-leaf extract is used orally. Aloe whole-leaf extract that has not been filtered over charcoal still contains anthraquinones. This type of aloe whole-leaf extract is referred to as being "nondecolorized". The International Agency for Research on Cancer has classified this type of aloe whole-leaf extract as a possible human carcinogen (91598,91908). Although filtering aloe whole-leaf extract over charcoal removes the anthraquinones, some animal research suggests that this filtered extract, which is referred to as being "decolorized", may still cause gene mutations (91598). This suggests that constituents besides anthraquinones may be responsible for the carcinogenicity of aloe whole-leaf extract. It should be noted that commercial products that contain aloe whole-leaf extract may be labeled as containing "whole leaf Aloe vera juice" or "aloe juice" (91908).
LIKELY UNSAFE ...when aloe latex is used orally in high doses. Ingesting aloe latex 1 gram daily for several days can cause nephritis, acute kidney failure, and death (8,8961).
CHILDREN: POSSIBLY SAFE
when aloe gel is used topically and appropriately.
Aloe gel-containing formulations have been safely applied in clinical trials (90124,90131).
CHILDREN: POSSIBLY UNSAFE
when aloe latex and aloe whole leaf extracts are used orally in children.
Children younger than 12 years may experience abdominal pain, cramps, and diarrhea (4).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Anthraquinones present in aloe latex and aloe whole leaf extracts have irritant, cathartic, and possible mutagenic effects (4,16387,16388,90122). There are also anecdotal reports and evidence from animal research that anthraquinones or aloe whole leaf extracts might induce abortion and stimulate menstruation; avoid using (4,8,19,90122).
LACTATION: POSSIBLY UNSAFE
when aloe preparations are used orally.
Cathartic and mutagenic anthraquinones present in aloe latex and aloe whole leaf extracts might pass into milk; avoid using (4,19).
LIKELY SAFE ...when used orally with appropriate fluid intake, short-term (12,272). Black psyllium has been used with apparent safety in doses of 15-30 grams daily for up to 6 months (19156,10091,93215,102826). The U.S. Food and Drug Administration (FDA) requires over-the-counter medicines that contain dry or incompletely hydrated psyllium to carry a warning that they should be taken with at a least a full glass of liquid to reduce the risk of choking. This labeling also applies to foods containing psyllium that are marketed with a claim of reducing the risk of coronary heart disease (93217,93218).
LIKELY UNSAFE ...when black psyllium is used orally without adequate fluid intake due to the risk for choking and gastrointestinal obstruction (2,18,93218). ...when granular dosage forms containing black psyllium are used as over-the-counter (OTC) laxatives. The U.S. Food and Drug Administration (FDA) states that these granular dosage forms are not generally recognized as safe and effective (GRASE) as OTC laxatives due to an increased risk of choking and gastrointestinal obstruction (93219).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally with appropriate fluid intake (272).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Cascara sagrada seems to be safe when used for less than one week (272,25023,40087). Cascara sagrada was formerly approved by the US Food and Drug Administration (FDA) as a safe and effective over-the-counter (OTC) laxative, but this designation was removed in 2002 due to a lack of supporting evidence (8229).
POSSIBLY UNSAFE ...when used orally, long-term. Using cascara sagrada for more than 1-2 weeks can lead to dependence, electrolyte loss, and hypokalemia (272).
CHILDREN: POSSIBLY UNSAFE
when used orally in children.
Cascara sagrada should be used cautiously in children due to the risk of electrolyte loss and hypokalemia (272).
PREGNANCY:
Insufficient reliable information available; avoid using.
LACTATION: POSSIBLY UNSAFE
when used orally.
Cascara sagrada is excreted into breast milk and might cause diarrhea (272).
LIKELY SAFE ...when used orally in the amounts commonly found in foods (12). There is insufficient reliable information available about the safety of chickweed when used orally or topically as a medicine.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods (12).
There is insufficient reliable information available about the safety of chickweed when used orally in amounts greater than those found in food; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when clove oil is applied topically (272). A clove oil 1% cream has been applied to the anus with apparent safety for up to 6 weeks (43487). A liposome-based product containing clove oil 45% has been applied to the palms with apparent safety for up to 2 weeks (100596).
LIKELY UNSAFE ...when clove smoke is inhaled. Smoking clove cigarettes can cause respiratory injury (17,43599). ...when clove oil is injected intravenously. This can cause pulmonary edema, hypoxemia, and acute dyspnea (16384). There is insufficient reliable information available about the safety of using clove orally in medicinal amounts.
CHILDREN: LIKELY UNSAFE
when clove oil is taken orally.
Ingesting 5-10 mL of undiluted clove oil has been linked to reports of coagulopathy, liver damage, and other serious side effects in infants and children up to 3 years of age (6,17,43385,43395,43419,43457,43652).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts found in foods (4912).
Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of using clove in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
POSSIBLY SAFE ...when used orally and appropriately. Devil's claw extract has been used with apparent safety in doses of up to 2400 mg daily for up 12 weeks (6472,8608,14332,14418,47112,47114,47116,47117,47155). There is insufficient reliable information available about the safety of devil's claw when used orally long-term or when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Anecdotal evidence suggests that devil's claw has oxytocic effects in humans. Also, in vitro research shows that moderate to high doses of devil's claw root extract induce contractions of isolated uterine muscle from pregnant and nonpregnant rats (94689); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the fruit is consumed orally in food amounts (13527). There is insufficient reliable information available about the safety of European barberry when used orally in medicinal amounts or when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in newborns.
The berberine constituent of European barberry can cause kernicterus in newborns, particularly preterm neonates with hyperbilirubinemia (2589). There is insufficient reliable information available about the safety of European barberry when used orally in older children.
PREGNANCY: LIKELY UNSAFE
when used orally.
Berberine is thought to cross the placenta and may cause harm to the fetus. Kernicterus has developed in newborn infants exposed to berberine (2589).
LACTATION: LIKELY UNSAFE
when used orally.
Berberine and other harmful constituents can be transferred to the infant through breast milk (2589).
LIKELY SAFE ...when ground flaxseed is used orally and appropriately. Ground flaxseed has been safely used in numerous clinical trials in doses up to 30-60 grams daily for up to 1 year (6803,6808,8020,10952,10978,12908,12910) (16760,16761,16762,16765,16766,18224,21191,21194,21196,21198) (21199,21200,22176,22179,22180,22181,65866,66065) (101943,101949,101950).
POSSIBLY SAFE ...when flaxseed lignan extract or mucilage is used orally and appropriately. Some clinical research shows that a specific flaxseed lignan extract (Flax Essence, Jarrow Formulas) 600 mg daily can be used with apparent safety for up to 12 weeks (16768). Additional clinical research shows that other flaxseed lignin extracts can be used with apparent safety for up to 6 months (21193,21197,21200). In one clinical trial, flaxseed mucilage was used with apparent safety at a dose of up to 5120 mg daily for up to 12 weeks (108047)....when flaxseed is used topically in a warm poultice (101946).
POSSIBLY UNSAFE ...when raw or unripe flaxseed is used orally. Raw flaxseed contains potentially toxic cyanogenic glycosides (linustatin, neolinustatin, and linamarin); however, these glycosides have not been detected after flaxseed is baked (5899). Unripe flaxseeds are also thought to be poisonous when consumed due to cyanide content.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Flaxseed can have mild estrogenic effects. Theoretically, this might adversely affect pregnancy (9592,12907); however, there is no reliable clinical evidence about the effects of flaxseed on pregnancy outcomes.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when consumed in amounts commonly found in foods. Hops extract and hops oil have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when hops extract and hops-derived bitter acids are used orally and appropriately for medicinal purposes, short-term. Hops extract has been used with apparent safety in doses of up to 300 mg daily for 2-3 months. Hops-derived bitter acids have been used with apparent safety at a dose of 35 mg daily for 3 months (12,55338,55370,102899,105953,107813).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Lactobacillus acidophilus has been safely used as part of multi-ingredient probiotic products in studies lasting up to nine months (1731,6087,14370,14371,90231,90296,92255,103438,12775,107581)(110950,110970,110979,110998,111785,111793). ...when used intravaginally and appropriately. L. acidophilus has been used safely in studies lasting up to 12 weeks (12108,13176,13177,90265). There is insufficient reliable information available about the safety of non-viable, heat-killed L. acidophilus formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lactobacillus acidophilus has been safely used for up to 5 days (96887). Also, combination probiotics containing L. acidophilus have been used with apparent safety in various doses and durations. L. acidophilus has been combined with Bifidobacterium animalis (HOWARU Protect, Danisco) for up to 6 months in children 3-5 years old (16847), with Bifidobacterium bifidum for 6 weeks (90602,96890), with Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis (Complete Probiotic Platinum) for 18 months in children 4 months to 5 years of age (103436), and in a specific product (Visbiome, ExeGi Pharma) containing a total of 8 species for 3 months in children 2-12 years old (107497). There is insufficient reliable information available about the safety of L. acidophilus in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lactobacillus acidophilus during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Marjoram and its essential oil have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the leaf is used orally and appropriately in tea, short-term (12,18). ...when marjoram oil is used orally and appropriately, short-term (11).
POSSIBLY UNSAFE ...when the flower, leaf, and oil are used orally, long-term. Marjoram contains arbutin, a hydroquinone glycoside (2,18). Studies in animals suggest that long-term use of hydroquinone can damage the liver and kidneys and might cause cancer (2,76395,95524). There is insufficient reliable information available about the safety of marjoram when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used in medicinal amounts; marjoram has the potential for stimulating menstruation (19,95324).
Avoid amounts greater than those found in foods.
LACTATION:
Insufficient reliable information available; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. A specific milk thistle extract standardized to contain 70% to 80% silymarin (Legalon, Madaus GmbH) has been safely used in doses up to 420 mg daily for up to 4 years (2613,2614,2616,7355,63210,63212,63278,63280,63299,63340)(88154,97626,105792). Higher doses of up to 2100 mg daily have been safely used for up to 48 weeks (63251,96107,101150). Another specific milk thistle extract of silymarin (Livergol, Goldaru Pharmaceutical Company) has been safely used at doses up to 420 mg daily for up to 6 months (95021,95029,102851,102852,105793,105794,105795,113979,114909,114913)(114914). Some isolated milk thistle constituents also appear to be safe. Silibinin (Siliphos, Thorne Research) has been used safely in doses up to 320 mg daily for 28 days (63218). Some combination products containing milk thistle and other ingredients also appear to be safe. A silybin-phosphatidylcholine complex (Silipide, Inverni della Beffa Research and Development Laboratories) has been safely used in doses of 480 mg daily for 7 days (7356) and 240 mg daily for 3 months (63320). Tree turmeric and milk thistle capsules (Berberol, PharmExtracta) standardized to contain 60% to 80% silybin have been safely used twice daily for up to 12 months (95019,96140,96141,96142,97624,101158).
POSSIBLY SAFE ...when used topically and appropriately, short-term. A milk thistle extract cream standardized to silymarin 0.25% (Leviaderm, Madaus GmbH) has been used safely throughout a course of radiotherapy (63239). Another milk thistle extract cream containing silymarin 1.4% has been used with apparent safety twice daily for 3 months (105791,110489). A cream containing milk thistle fruit extract 25% has been used with apparent safety twice daily for up to 12 weeks (111175). A milk thistle extract gel containing silymarin 1% has been used with apparent safety twice daily for 9 weeks (95022). There is insufficient reliable information available about the safety of intravenous formulations of milk thistle or its constituents.
PREGNANCY AND LACTATION:
While research in an animal model shows that taking milk thistle during pregnancy and lactation does not adversely impact infant development (102850), there is insufficient reliable information available about its safety during pregnancy or lactation in humans; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A milk thistle extract 140 mg three times daily has been used with apparent safety for up to 9 months (88154,98452). A specific product containing the milk thistle constituent silybin (Siliphos, Thorne Research Inc.) has been used with apparent safety in doses up to 320 mg daily for up to 4 weeks in children one year of age and older (63218).
LIKELY SAFE ...when consumed in amounts commonly found in food. Myrrh is approved for use in foods as a flavoring agent in the US (11).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Myrrh 400 mg three times daily has been safely used for up to 12 months (93653,104593). Myrrh 500 mg three times daily has been used with apparent safety for 2 weeks (104840). ...when used topically and appropriately (2,4,5,11,18). As a diluted bath, myrrh has been used with apparent safety for up to 7 days (104838,104839).
POSSIBLY UNSAFE ...when used orally in excessive doses. Myrrh may cause kidney irritation and diarrhea when used in doses of 2-4 grams (12).
PREGNANCY: LIKELY UNSAFE
when used orally.
Myrrh stimulates uterine tone and blood flow and may have an abortifacient effect (4,12,19,93645). There is insufficient reliable information available about the safety of the topical use of myrrh during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in food amounts (4960,4969,5792,5797). Oat bran has Generally Recognized as Safe (GRAS) status in the US (4912). Whole grain oats 50-100 grams daily have been used for up to 1 year without serious adverse effects (97520).
POSSIBLY SAFE ...when used topically and appropriately (12). Lotion containing colloidal oat 1% has been used topically without adverse effects for up to 6 weeks (97518,103340). There is insufficient reliable information available about the safety of oats when used orally in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts (5792,5797).
LIKELY SAFE ...when used orally in amounts commonly found in food.
POSSIBLY SAFE ...when used topically and appropriately (854,856,857,14000,14333). A specific 10% Oregon grape cream (Relieva, Apollo Pharmaceutical) has been used with apparent safety in studies lasting up to 12 weeks (14000,14333). There is insufficient reliable information available about the safety of Oregon grape when used orally in medicinal amounts.
CHILDREN: LIKELY UNSAFE
when used orally in newborns.
The berberine constituent of Oregon grape can cause kernicterus in newborns, particularly preterm neonates with hyperbilirubinemia (2589).
PREGNANCY: LIKELY UNSAFE
when used orally.
Berberine, a constituent of Oregon grape, is thought to cross the placenta and may cause harm to the fetus. Kernicterus has developed in newborn infants exposed to berberine (2589).
LACTATION: LIKELY UNSAFE
when used orally.
Berberine and other harmful constituents can be transferred to the infant through breast milk (2589).
LIKELY SAFE ...when the fruit is used orally in amounts commonly found in foods (13622).
POSSIBLY SAFE ...when the fruit is used orally and appropriately in medicinal amounts (6481,9796). There is insufficient reliable information available about the safety of red raspberry leaf when used orally or topically.
PREGNANCY: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
PREGNANCY: POSSIBLY SAFE
when red raspberry leaf is used orally and appropriately in medicinal amounts during late pregnancy under the supervision of a healthcare provider.
Red raspberry leaf is used by nurse midwives to facilitate delivery. There is some evidence that red raspberry leaf in doses of up to 2.4 grams daily, beginning at 32 weeks' gestation and continued until delivery, can be safely used for this purpose (6481,9796). Make sure patients do not use red raspberry leaf without the guidance of a healthcare professional.
PREGNANCY: LIKELY UNSAFE
when red raspberry leaf is used orally in medicinal amounts throughout pregnancy or for self-treatment.
Red raspberry leaf might have estrogenic effects (6180). These effects can adversely affect pregnancy. Tell pregnant patients not to use red raspberry leaf at any time during pregnancy without the close supervision of a healthcare provider.
LACTATION: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
There is insufficient reliable information available about the safety of red raspberry leaf; avoid using.
LIKELY SAFE ...when the stalk is used in amounts commonly found in foods and when the root is used as a food flavoring. Rhubarb has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the root or rhizome is used orally and appropriately in medicinal amounts for up to 2 years (92294,92295,92297). ...when the stalk is used orally and appropriately in medicinal amounts for up to 4 weeks (71351,71363,97920). ...when used topically and appropriately (10437,97919).
POSSIBLY UNSAFE ...when the leaf is used orally. Rhubarb leaf contains oxalic acid and soluble oxalate, which can cause abdominal pain, burning of the mouth and throat, diarrhea, nausea, vomiting, seizures, and death (17).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in medicinal amounts, rhubarb root is a stimulant laxative; avoid using (12).
POSSIBLY SAFE ...when used orally and appropriately (4,12,272,512,1740).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Slippery elm bark has historically been inserted into the cervix to induce abortion. As a result, slippery elm has been reported in some sources to have abortifacient activity. However, there is no reliable information available about whether slippery elm has abortifacient activity when taken orally.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Verbena has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912). There is insufficient reliable information available about the safety of verbena when used orally or topically in medicinal amounts.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of verbena in medicinal amounts during pregnancy and lactation; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Western Herbal and Nutrition. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, aloe gel might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
In vitro research shows that aloe gel can inhibit platelet aggregation. This inhibition was greater than that seen with celecoxib, but less than that seen with aspirin (105501).
|
Aloe might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, aloe might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that aloe extract induces CYP1A2 enzymes (111404).
|
Theoretically, aloe latex might increase the risk of adverse effects when taken with cardiac glycosides.
Overuse of aloe latex can increase the risk of adverse effects from cardiac glycoside drugs, such as digoxin, due to potassium depletion. Overuse of aloe, along with cardiac glycoside drugs, can increase the risk of toxicity (19).
|
Theoretically, aloe latex might increase the risk of hypokalemia when taken with diuretic drugs.
Overuse of aloe latex might compound diuretic-induced potassium loss, increasing the risk of hypokalemia (19).
|
Theoretically, aloe latex might increase the risk for fluid and electrolyte loss when taken with stimulant laxatives.
|
Theoretically, aloe latex might increase the risk of bleeding when taken with warfarin.
Aloe latex has stimulant laxative effects. In some people aloe latex can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Advise patients who take warfarin not to take excessive amounts of aloe vera.
|
Theoretically, black psyllium might reduce the effects of carbamazepine and increase the risk for convulsions.
Theoretically, black psyllium might reduce carbamazepine absorption. A preliminary study using blond psyllium reported decreased carbamazepine bioavailability due to binding of the drug to psyllium, as well as reduction of available fluid in the gut for dissolution of the drug (539). This interaction may also occur with black psyllium.
|
Theoretically, taking black psyllium at the same time as digoxin might reduce digoxin absorption and decrease digoxin levels.
|
Theoretically, taking black psyllium at the same time as ethinyl estradiol might alter levels of estradiol.
Concurrent use of blond psyllium with ethinyl estradiol results in a slight increase in the extent of ethinyl estradiol absorption and a slower rate of absorption. This is unlikely to be clinically significant (12421).
|
Theoretically, taking black psyllium at the same time as lithium might reduce lithium absorption.
The fiber in black psyllium might reduce lithium absorption and plasma levels. Some case reports describe a reduction in plasma lithium levels with concomitant administration of blond psyllium. This was reversed when psyllium was stopped (540,92194). This interaction may also occur with black psyllium.
|
Theoretically, black psyllium might increase the therapeutic and adverse effects of metformin.
Animal research shows that concurrent consumption of blond psyllium with metformin slows and increases the absorption of metformin (99433). This interaction may also occur with black psyllium. To avoid changes in absorption, take psyllium 30-60 minutes after metformin.
|
Theoretically, taking black psyllium at the same time as olanzapine might reduce olanzapine absorption.
The fiber in black psyllium might decrease the absorption of olanzapine. A single case report describes a reduction in the effectiveness of olanzapine when it was concomitantly administered with an unspecified type of psyllium 3 grams orally twice daily. This effect was reversed when psyllium was stopped (106858).
|
Theoretically, psyllium might increase, decrease, or have no effect on the absorption of oral drugs.
Psyllium seems to have variable effects on drug absorption. To avoid changes in absorption, take psyllium 30-60 minutes after oral medications. Animal research shows that blond psyllium delays and increases the absorption of metformin and ethinyl estradiol (12421,99433). Case reports and animal research suggest that blond psyllium might reduce absorption of lithium, digoxin, olanzapine, and carbamazepine (12,18,272,93214,106858). Finally, some pharmacokinetic studies show that psyllium does not affect the absorption of levothyroxine or warfarin (12420,103940). Although many of these studies evaluated blond psyllium, the fiber content in black psyllium may have similar effects.
|
Theoretically, cascara sagrada might increase the risk of hypokalemia when taken with corticosteroids.
|
Theoretically, cascara sagrada might decrease the effects of CYP3A4 substrates.
In vitro research suggests that cascara sagrada can induce CYP3A4 enzymes, albeit to a much lower degree than rifampin, a known CYP3A4 inducer (110704).
|
Theoretically, cascara sagrada might cause hypokalemia, potentially increasing the risk of digoxin toxicity.
|
Theoretically, cascara sagrada might increase the risk of hypokalemia when taken with diuretic drugs.
|
Theoretically, cascara sagrada might have additive adverse effects when taken with stimulant laxatives.
Cascara sagrada has stimulant laxative effects and might compound fluid and electrolyte losses when taken with stimulant laxatives (19).
|
Theoretically, cascara sagrada might increase the risk of bleeding when taken with warfarin.
Cascara sagrada has stimulant laxative effects (19). In some people, cascara sagrada can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding.
|
Theoretically, concomitant use with drugs with sedative properties may cause additive effects and side effects.
|
Theoretically, catnip might reduce excretion and increase levels of lithium.
Catnip is thought to have diuretic properties which might reduce lithium excretion. The dose of lithium might need to be decreased.
|
Theoretically, clove oil may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, concomitant use of clove extracts with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical and laboratory research suggest that polyphenol extracts from clove flower buds might lower blood glucose levels (100595). Dosing adjustments for insulin or oral hypoglycemic agents may be necessary when taken with clove. Monitor blood glucose levels closely.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP1A2.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP1A2 in a dose-dependent manner, (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2C9.
In vitro research shows that eugenol, the principal constituent of clove, inhibits CYP2C9 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2D6.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP2D6 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP3A4.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP3A4 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, topical application of clove oil with ibuprofen might increase the absorption and side effects of topical ibuprofen.
Laboratory research shows that topical application of clove oil increases the absorption of topical ibuprofen (98854). This interaction has not been reported in humans.
|
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Theoretically, devil's claw might increase levels of drugs metabolized by CYP2C19.
In vitro research shows that devil's claw might inhibit CYP2C19, although this has not been reported in humans (12479).
|
Theoretically, devil's claw might increase levels of drugs metabolized by CYP2C9.
In vitro research shows that devil's claw might inhibit CYP2C9, although this has not been reported in humans (12479).
|
Theoretically, devil's claw might increase levels of drugs metabolized by CYP3A4.
In vitro research shows that devil's claw might inhibit CYP3A4, although this has not been reported in humans (12479).
|
Theoretically, devil's claw might decrease the effectiveness of H2-blockers.
Devil's claw has been reported to increase stomach acid, which might interfere with the effects of H2-blockers (19).
|
Theoretically, devil's claw might increase levels of P-glycoprotein substrates.
|
Theoretically, devil's claw might decrease the effectiveness of PPIs.
Devil's claw has been reported to increase stomach acid, which might interfere with the effects of PPIs (19).
|
Theoretically, Devil's claw might increase the activity of warfarin.
In one case report, purpura occurred in a patient taking warfarin and devil's claw concurrently. This might indicate over-anticoagulation (613). It is unclear if this was due to Devil's claw or other contributing factors.
|
Theoretically, taking European barberry with anticholinergic drugs might cause additive effects.
In vitro evidence suggests that European barberry might have anticholinergic properties (13527).
|
Theoretically, European barberry may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking European barberry with antidiabetes drugs might increase the risk of hypoglycemia.
Preliminary clinical evidence suggests that European barberry juice reduces fasting glucose levels in patients with type 2 diabetes who are also taking antidiabetes drugs (98575). Additionally, some animal studies show that berberine, a constituent of European barberry, has antiglycemic potential (33622,33667). Monitor blood glucose levels closely.
|
Theoretically, taking European barberry with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, taking European barberry with cholinergic drugs might decrease the effects of cholinergic drugs.
In vitro evidence suggests that European barberry might have anticholinergic properties (13527).
|
Theoretically, concomitant use with drugs that have sedative properties may cause additive effects.
|
Theoretically, concomitant use with cyclosporine may cause additive effects.
Berberine, a constituent of European barberry, can reduce the metabolism and increase serum levels of cyclosporine. This effect is attributed to the ability of berberine to inhibit cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporine (13524). Theoretically, European barberry might have a similar effect.
|
Theoretically, European barberry might increase the levels and clinical effects of CYP3A4 substrates.
There is very preliminary evidence suggesting that berberine, a constituent of European barberry, might inhibit the CYP3A4 enzyme (13524). Theoretically, European barberry might have a similar effect.
|
Theoretically, antibiotics might interfere with the metabolism of flaxseed constituents, which could potentially alter the effects of flaxseed.
Some potential benefits of flaxseed are thought to be due to its lignan content. Secoisolariciresinol diglucoside (SDG), a major lignan precursor, is found in high concentrations in flaxseed. SDG is converted by bacteria in the colon to the lignans enterolactone and enterodiol (5897,8022,8023,9592). Antibiotics alter the flora of the colon, which could theoretically alter the metabolism of flaxseed.
|
Theoretically, using flaxseed in combination with anticoagulant or antiplatelet drugs might have additive effects and increase the risk of bleeding.
|
Theoretically, flaxseed might have additive effects when used with antidiabetes drugs and increase the risk for hypoglycemia.
|
Theoretically, flaxseed might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking flaxseed might decrease the effects of estrogens.
Flaxseed contains lignans with mild estrogenic and possible antiestrogenic effects. The lignans seem to compete with circulating endogenous estrogen and might reduce estrogen binding to estrogen receptors, resulting in an anti-estrogen effect (8868,9593). It is unclear if this effect transfers to exogenously administered estrogens.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, concomitant use of hops with sedative drugs might cause additive sedation.
|
Hops extract does not seem to affect the metabolism of CYP1A2 substrates.
In vitro research suggests that flavonoid constituents of hops inhibit CYP1A2 enzyme activity (10686). However, a pharmacokinetic study in healthy postmenopausal patients shows that taking a standardized extract of spent hops containing prenylated phenols, as 59.5 mg twice daily for 2 weeks, does not affect levels of caffeine, a CYP1A2 probe substrate (105954).
|
Theoretically, hops extract might alter metabolism of CYP3A4 substrates; however, this effect may not be clinically significant.
Animal research suggests that specific constituents of hops, called lupulones, can induce hepatic CYP3A4 enzyme activity (55325). However, a pharmacokinetic study in healthy postmenopausal patients with normal metabolism shows that taking a standardized extract of spent hops containing prenylated phenols, as 59.5 mg twice daily for 2 weeks, decreases the concentration of alprazolam, a CYP3A4 probe substrate, by 7.6%. This reduction is unlikely to be clinically relevant (105954).
|
Theoretically, concomitant use of large amounts of hops might interfere with hormone replacement therapy due to competition for estrogen receptors.
|
Theoretically, taking Lactobacillus acidophilus with antibiotic drugs might decrease the effectiveness of L. acidophilus.
L. acidophilus preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. acidophilus preparations by at least two hours.
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
|
Theoretically, licorice might reduce the effects of cisplatin.
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that licorice induces CYP1A2 enzymes (111404).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
In vitro research suggests that marjoram extract can inhibit acetylcholinesterase activity (31438,76912). Theoretically, using marjoram in medicinal amounts along with anticholinergic drugs might decrease the effectiveness of marjoram or the anticholinergic agent.
Some anticholinergic drugs include atropine, benztropine (Cogentin), biperiden (Akineton), procyclidine (Kemadrin), and trihexyphenidyl (Artane).
|
In vitro research suggests that marjoram extract inhibits platelet aggregation and adhesion (76932). Theoretically, marjoram might increase the risk of bleeding when used in medicinal amounts along with antiplatelet or anticoagulant drugs.
Some anticoagulant or antiplatelet drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
In vitro research suggests that marjoram extract can inhibit acetylcholinesterase activity (31438,76912). Theoretically, using marjoram in medicinal amounts along with cholinergic drugs might have additive effects and increase the risk of cholinergic side effects.
Cholinergic drugs include bethanechol (Urecholine), donepezil (Aricept), echothiophate (Phospholine Iodide), edrophonium (Enlon, Reversol, Tensilon), neostigmine (Prostigmin), physostigmine (Antilirium), pyridostigmine (Mestinon, Regonol), succinylcholine (Anectine, Quelicin), and tacrine (Cognex).
|
Taking milk thistle with antidiabetes drugs may increase the risk of hypoglycemia.
Clinical research shows that milk thistle extract, alone or along with tree turmeric extract, can lower blood glucose levels and glycated hemoglobin (HbA1c) in patients with type 2 diabetes, including those already taking antidiabetes drugs (15102,63190,63314,63318,95019,96140,96141,97624,97626,113987). Additionally, animal research shows that milk thistle extract increases the metformin maximum plasma concentration and area under the curve and decreases the renal clearance of metformin, due to inhibition of the multi-drug and toxin extrusion protein 1 (MATE1) renal tubular transport protein (114919).
|
Theoretically, milk thistle might inhibit CYP2B6.
An in vitro study shows that silybin, a constituent of milk thistle, binds to and noncompetitively inhibits CYP2B6. Additionally, silybin might downregulate the expression of CYP2B6 by decreasing mRNA and protein levels (112229).
|
It is unclear if milk thistle inhibits CYP2C9; research is conflicting.
In vitro research suggests that milk thistle might inhibit CYP2C9 (7089,17973,17976). Additionally, 3 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP2C9 substrates, including imatinib and capecitabine (111644). However, contradictory clinical research shows that milk thistle extract does not inhibit CYP2C9 or significantly affect levels of the CYP2C9 substrate tolbutamide (13712,95026). Differences in results could be due to differences in dosages or formulations utilized (95026).
|
It is unclear if milk thistle inhibits CYP3A4; research is conflicting.
While laboratory research shows conflicting results (7318,17973,17975,17976), pharmacokinetic research shows that taking milk thistle extract 420-1350 mg daily does not significantly affect the metabolism of the CYP3A4 substrates irinotecan, midazolam, or indinavir (8234,17974,93578,95026). However, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP3A4 substrates, including gefitinib, sorafenib, doxorubicin, and vincristine (111644).
|
Theoretically, milk thistle might interfere with estrogen therapy through competition for estrogen receptors.
|
Theoretically, milk thistle might affect the clearance of drugs that undergo glucuronidation.
Laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase levels of glucuronidated drugs. Other laboratory research suggests that a milk thistle extract of silymarin might inhibit beta-glucuronidase (7354), although the significance of this effect is unclear.
|
Theoretically, milk thistle might interfere with statin therapy by decreasing the activity of organic anion transporting polypeptide 1B1 (OATB1B1) and inhibiting breast cancer resistance protein (BCRP).
Preliminary evidence suggests that a milk thistle extract of silymarin can decrease the activity of the OATP1B1, which transports HMG-CoA reductase inhibitors into the liver to their site of action, and animal research shows this increases the maximum plasma concentration of pitavastatin and pravastatin (113975). The silibinin component also inhibits BCRP, which transports statins from the liver into the bile for excretion. However, in a preliminary study in healthy males, silymarin 140 mg three times daily had no effect on the pharmacokinetics of a single 10 mg dose of rosuvastatin (16408).
|
Theoretically, milk thistle may induce cytochrome P450 3A4 (CYP3A4) enzymes and increase the metabolism of indinavir; however, results are conflicting.
One pharmacokinetic study shows that taking milk thistle (Standardized Milk Thistle, General Nutrition Corp.) 175 mg three times daily in combination with multiple doses of indinavir 800 mg every 8 hours decreases the mean trough levels of indinavir by 25% (8234). However, results from the same pharmacokinetic study show that milk thistle does not affect the overall exposure to indinavir (8234). Furthermore, two other pharmacokinetic studies show that taking specific milk thistle extract (Legalon, Rottapharm Madaus; Thisilyn, Nature's Way) 160-450 mg every 8 hours in combination with multiple doses of indinavir 800 mg every 8 hours does not reduce levels of indinavir (93578).
|
Theoretically, milk thistle might increase the levels and clinical effects of ledipasvir.
Animal research in rats shows that milk thistle increases the area under the curve (AUC) for ledipasvir and slows its elimination (109505).
|
Theoretically, concomitant use of milk thistle with morphine might affect serum levels of morphine and either increase or decrease its effects.
Animal research shows that milk thistle reduces serum levels of morphine by up to 66% (101161). In contrast, laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase morphine levels. The effect of taking milk thistle on morphine metabolism in humans is not known.
|
Milk thistle may inhibit one form of OATP, OATP-B1, which could reduce the bioavailability and clinical effects of OATP-B1 substrates.
In vitro research shows that milk thistle inhibits OATP-B1. Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are OATP substrates, including sorafenib and methotrexate (111644). OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds into the body. Inhibition of OATP may reduce the bioavailability of oral drugs that are substrates of OATP.
|
Theoretically, milk thistle might increase the absorption of P-glycoprotein substrates. However, this effect does not seem to be clinically significant.
In vitro research shows that milk thistle can inhibit P-glycoprotein activity (95019,111644) and 1 case report from the World Health Organization (WHO) adverse drug reaction database describes increased abdominal pain in a patient taking milk thistle and the cancer medication vincristine, a P-glycoprotein substrate, though this patient was also taking methotrexate (111644). However, a small pharmacokinetic study in healthy volunteers shows that taking milk thistle (Enzymatic Therapy Inc.) 900 mg, standardized to 80% silymarin, in 3 divided doses daily for 14 days does not affect absorption of digoxin, a P-glycoprotein substrate (35825).
|
Theoretically, milk thistle might decrease the clearance and increase levels of raloxifene.
Laboratory research suggests that the milk thistle constituents silibinin and silymarin inhibit the glucuronidation of raloxifene in the intestines (93024).
|
Milk thistle might decrease the clearance of sirolimus.
Pharmacokinetic research shows that a milk thistle extract of silymarin decreases the apparent clearance of sirolimus in hepatically impaired renal transplant patients (19876). It is unclear if this interaction occurs in patients without hepatic impairment.
|
Theoretically, milk thistle might decrease the levels and clinical effects of sofosbuvir.
Animal research in rats shows that milk thistle reduces the metabolism of sofosbuvir, as well as the hepatic uptake of its active metabolite (109505).
|
Theoretically, the milk thistle constituent silibinin might increase tamoxifen levels and interfere with its conversion to an active metabolite.
Animal research suggests that the milk thistle constituent silibinin might increase plasma levels of tamoxifen and alter its conversion to an active metabolite. The mechanism appears to involve inhibition of pre-systemic metabolism of tamoxifen by cytochrome P450 (CYP) 2C9 and CYP3A4, and inhibition of P-glycoprotein-mediated efflux of tamoxifen into the intestine for excretion (17101). Whether this interaction occurs in humans is not known.
|
Theoretically, milk thistle might increase the effects of warfarin.
In one case report, a man stabilized on warfarin experienced an increase in INR from 2.64 to 4.12 after taking a combination product containing milk thistle 200 mg daily, as well as dandelion, wild yam, niacinamide, and vitamin B12. Levels returned to normal after stopping the supplement (101159). Although a direct correlation between milk thistle and the change in INR cannot be confirmed, some in vitro research suggests that milk thistle might inhibit cytochrome P450 2C9 (CYP2C9), an enzyme involved in the metabolism of various drugs, including warfarin (7089,17973,17976).
|
Theoretically, myrrh might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, myrrh might decrease the effectiveness of warfarin.
In one case, a patient who was previously stable on warfarin had a significant decline in international normalized ratio (INR) following consumption of an aqueous extract of myrrh (14425).
|
Theoretically, oats may have additive effects with antidiabetic agents and might increase the risk of hypoglycemia.
|
Concomitant use of oats and insulin might increase the risk of hypoglycemia.
In patients with insulin-dependent type 2 diabetes, taking oats 100 grams daily for 2 days reduces the insulin dose required to achieve metabolic control (103336).
|
Theoretically, Oregon grape might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, Oregon grape might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, Oregon grape might increase the risk of hypotension when taken with antihypertensive drugs.
Animal research suggests that berberine, a constituent of Oregon grape, can have hypotensive effects (33692,34308). Also, an analysis of clinical evidence suggests that taking berberine in combination with amlodipine (Norvasc) can lower systolic and diastolic blood pressure when compared with taking amlodipine alone (91956).
|
Theoretically, Oregon grape might increase the sedative effects of CNS depressants.
|
Theoretically, Oregon grape might increase the effects and adverse effects of cyclosporine.
Berberine, a constituent of Oregon grape, can reduce metabolism of cyclosporine and increase serum levels. It might inhibit cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporine (13524).
|
Theoretically, Oregon grape might increase serum levels of drugs metabolized by CYP2C9.
Preliminary clinical evidence suggests that berberine, a constituent of Oregon grape, can inhibit cytochrome P450 2C9 (CYP2C9) (34279).
|
Theoretically, Oregon grape might increase serum levels of drugs metabolized by CYP2D6.
|
Theoretically, Oregon grape might increase serum levels of drugs metabolized by CYP3A4.
|
Theoretically, Oregon grape might increase serum levels of drugs that are P-glycoprotein (P-gp) substrates.
In vitro research suggests that Oregon grape extracts inhibit P-gp efflux (112342).
|
Theoretically, taking red raspberry leaf with anticoagulant/antiplatelet drugs might increase the risk of bleeding.
In vitro research suggests that red raspberry leaf extract has antiplatelet activity and enhances the in vitro effects of the antiplatelet medication cangrelor (96300). This interaction has not been reported in humans.
|
Red raspberry leaf might reduce glucose levels in patients being treated with insulin.
In one case report, a 38-year-old patient with gestational diabetes, whose blood glucose was being controlled with medical nutrition therapy and insulin, developed hypoglycemia after consuming two servings of raspberry leaf tea daily for 3 days beginning at 32 weeks' gestation. The patient required an insulin dose reduction. The hypoglycemia was considered to be probably related to use of red raspberry leaf tea (96299).
|
Theoretically, frequent and high doses of rhubarb might increase the risk of hypokalemia when taken with corticosteroids.
|
Theoretically, taking rhubarb with cyclosporine might reduce cyclosporine levels.
Animal research shows that co-administration of rhubarb decoction 0.25 or 1 gram/kg with cyclosporine 2.5 mg/kg, decreases cyclosporine maximum plasma concentration and overall exposure levels when compared with taking cyclosporine alone. The authors theorize that rhubarb might reduce cyclosporine bioavailability by inducing of P-glycoprotein and/or cytochrome P450 3A4 (92304). However, since rhubarb was administered as a single oral dose and enzyme induction usually occurs after multiple doses, it is possible that cyclosporine absorption was actually reduced via rhubarb's stimulant laxative effects (12). Also, the composition of the rhubarb decoction was not described.
|
Theoretically, overuse of rhubarb might increase the risk of adverse effects when taken with digoxin.
|
Theoretically, frequent and high doses of rhubarb might increase the risk of hypokalemia.
|
Theoretically, concomitant use of rhubarb with potentially hepatotoxic drugs might increase the risk of developing liver damage.
|
Theoretically, long-term use of anthraquinones from rhubarb might increase the risk of nephrotoxicity when used with nephrotoxic drugs.
The anthraquinone constituents of rhubarb have been shown to induce nephrotoxicity in animal research (71322). Additionally, in a case report, a 23-year old female presented with kidney failure after taking 6 tablets of a proprietary slimming agent (found to contain the anthraquinones emodin and aloe-emodin from rhubarb) daily for 6 weeks and then adding diclofenac 25 mg 4 times daily for 2 days. The authors postulate that the anthraquinone constituents of rhubarb contributed to the renal dysfunction, and the addition of diclofenac, a nephrotoxic drug, led to renal failure (15257). Until more is known, advise patients to avoid taking rhubarb if they are taking other potentially nephrotoxic drugs.
|
Theoretically, rhubarb might increase the risk for fluid and electrolyte loss when taken with other stimulant laxatives.
|
Theoretically, excessive use of rhubarb might increase the risk of bleeding when taken with warfarin.
|
Theoretically, slippery elm may slow the absorption and reduce serum levels of oral drugs.
Slippery elm inner bark contains mucilage, which may interfere with the absorption of orally administered drugs (19).
|
In vitro research suggests that beta-myrcene, a terpene constituents of verbena, can significantly inhibit cytochrome P450 2B1 (CYP2B1) enzyme activity (82024). Theoretically, verbena might increase levels of drugs metabolized by this enzyme. However, this interaction has not been reported in humans.
Some substrates of CYP2B1 include cyclophosphamide, ifosfamide, barbiturates, bromobenzene, and others.
|
Below is general information about the adverse effects of the known ingredients contained in the product Western Herbal and Nutrition. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, aloe products are generally well tolerated when used in typical doses.
However, oral aloe latex is associated with a greater risk of adverse effects, especially when used in high doses or long-term.
Most Common Adverse Effects:
Orally: Aloe latex may cause abdominal pain, cramps, and diarrhea.
Topically: Burning, erythema, and itching. Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Aloe latex is associated with serious adverse effects when taken in high doses or long-term. Cases of acute hepatitis due to a hypersensitivity reaction to aloe leaf extract has been reported.
Dermatologic ...Topically, aloe gel has occasionally been associated with burning (12164,19741,30697,30706), itching (12164,19741,30697), eczema (90122), erythema (19748,30706,90123), contact dermatitis (12163,12164,30695,30736,30737,30738,30740), popular eruption (30732), and urticaria (30712). Also, a case of generalized nummular and popular dermatitis attributed to hypersensitivity has been reported for a 47-year-old male who used aloe leaf gel, both topically and orally, for 4 years (30740).
Endocrine ...A case of severe hypokalemia has been reported for a male breast cancer patient who was undergoing chemotherapy and using aloe vera 1 liter daily orally for 2 weeks. The hypokalemia was attributed to the cathartic effects of aloe and resolved once aloe use was discontinued (30704).
Gastrointestinal
...Orally, aloe latex can cause abdominal pain and cramps.
Long-term use or abuse of aloe latex can cause diarrhea, sometimes with hypokalemia, albuminuria, hematuria, muscle weakness, weight loss, arrhythmia, and pseudomelanosis coli (pigment spots in intestinal mucosa). Pseudomelanosis coli is believed to be harmless, and usually reverses with discontinuation of aloe. It is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138). Orally, aloe gel may cause nausea, stomach cramps, and other gastrointestinal complaints in some patients (104174,111921,111663).
Topically, applying aloe gel in the mouth may cause nausea within 5 minutes of application in some patients (90124).
Hematologic ...A case of Henoch-Schonlein purpura, characterized by abdominal pain, purpura, and severe arthralgia, has been reported in a 52-year-old male who drank aloe juice prepared from four to five leaflets for 10 days prior to symptom development (91598).
Hepatic ...Cases of acute hepatitis have been reported after ingestion of aloe leaf extracts for between 3 weeks and 5 years. This is thought to be a hypersensitivity reaction (15567,15569,16386,17419,90126,91598). A case of acute hepatitis has also been reported for a 45-year-old female who drank two ounces of Euforia juice (Nuverus International), a product containing green tea, noni, goji, and aloe, daily for one month (90125). However, one small clinical trial in healthy individuals shows that taking aloe gel 2 ounces twice daily for 60 days does not impair liver function (104174).
Renal ...Orally, aloe latex can cause hemorrhagic gastritis, nephritis, and acute kidney failure following prolonged use of high doses (1 gram daily or more) (8961).
General
...Orally, black psyllium is generally well tolerated when taken with adequate fluids.
Most Common Adverse Effects:
Orally: Bloating, flatulence.
Serious Adverse Effects (Rare):
Orally: Bowel obstruction, esophageal obstruction.
Gastrointestinal ...Black psyllium can cause flatulence and bloating. These effects are generally transient and can be reduced by increasing the daily dose gradually (93214). Taking black psyllium with too little fluid can lead to esophageal or intestinal obstruction (18,93217,93218).
Immunologic ...Several psyllium species have been associated with sensitization and allergic reactions, especially in people exposed to airborne psyllium dust, such as nurses preparing doses of psyllium powder, and workers in psyllium processing plants (93214). Symptoms of occupational exposure include rhinitis, conjunctivitis, wheezing, asthma, and urticarial rashes (18,93214). Severe anaphylactic reactions have been reported in individuals with occupational exposure who then ingest psyllium products (2329,8079,9246).
General
...Orally, cascara sagrada seem to be well tolerated when used appropriately, short-term.
Most Common Adverse Effects:
Orally: Mild abdominal discomfort and cramps.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity. Fresh or improperly aged cascara sagrada bark can cause severe vomiting.
Endocrine ...Orally, long-term use of cascara sagrada can lead to potassium depletion (4).
Gastrointestinal
...Orally, cascara sagrada can commonly cause mild abdominal discomfort, colic, and cramps (4).
In some cases, chronic use can cause pseudomelanosis coli. Pseudomelanosis coli (pigment spots in intestinal mucosa) is believed to be harmless, usually reverses with discontinuation, and is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138).
Fresh or improperly aged cascara sagrada bark can cause severe vomiting due to the presence of free anthrone constituents (2,92307).
Genitourinary ...Orally, long-term use of cascara sagrada can lead to albuminuria and hematuria (4).
Hepatic ...There is some concern about potential liver problems with cascara sagrada. In some cases, cascara sagrada bark 750-1275 mg (containing approximately 21 mg cascaroside) daily in divided doses for three days resulted in cholestatic hepatitis, ascites, and portal hypertension. Symptoms resolved following discontinuation of cascara sagrada (6895,92306).
Musculoskeletal ...Orally, long-term use of cascara sagrada can lead to muscle weakness and finger clubbing (4).
Other ...Orally, long-term use of cascara sagrada can lead to cachexia (4).
General
...Orally, catnip is generally well-tolerated when used in appropriate amounts.
Most Common Adverse Effects:
Orally: Headache, malaise, vomiting.
Gastrointestinal ...Orally, large amounts of catnip might cause stomachache and vomiting (6,2596).
Neurologic/CNS ...Orally, taking too much catnip may result in headache and malaise (6). In one case, a toddler developed a stomachache and irritability, followed by lethargy and a hypnotic state, after ingesting raisins soaked in catnip tea and chewing on the tea bag (5,2596).
General ...Orally, chickweed is generally well tolerated when consumed in food amounts. There is currently a limited amount of information on the adverse effects of chickweed when used as a medicine. A thorough evaluation of safety outcomes has not been conducted.
Immunologic ...Topically, chickweed extract has been reported to cause contact dermatitis (13478,41587,41590).
Neurologic/CNS ...Orally, consumption of large amounts of chickweed tea has been associated with some poorly documented cases of human paralysis (6). There is also one case of alleged nitrate toxicity leading to paralysis, but the chickweed implicated in this case may have been contaminated with fertilizer (12).
General
...Orally, clove is well tolerated when consumed as a spice; however, clove oil in doses of only 5-10 mL can be toxic in children.
Topically, clove is generally well tolerated. When inhaled or used intravenously, clove may be unsafe.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, dental decay, itching, mucous membrane irritation, tingling, ulcers.
Inhaled: Dental decay, hypertension, itching, tachycardia.
Serious Adverse Effects (Rare):
Orally: Liver failure, respiratory distress.
Inhaled: Pneumonitis, pulmonary edema, respiratory distress.
Cardiovascular ...Smoking clove cigarettes increases heart rate and systolic blood pressure (12892).
Dental ...Population research has found that the risk of dental decay is increased in clove cigarette smokers (43332). Repeated topical application of clove in the mouth can cause gingival damage and skin and mucous membrane irritation (4,272,512). Eugenol, a constituent of clove and a material commonly found in dentistry, has been associated with side effects including gum inflammation and irritation (43365,43373,43522).
Dermatologic ...The American Dental Association has accepted clove for professional use, but not nonprescription use, due to potential damage to soft tissue that may be induced by clove application. In clinical research, small aphthous-like ulcers appeared in the area of the mouth where clove gel was applied in four participants (43448). Skin irritation and stinging have been reported with clove oil application (43338,43626). In a 24-year-old, exposure to a clove oil spill resulted in permanent local anesthesia and anhidrosis, or lack of sweating, at the affected area (43626).
Endocrine ...A case of hypoglycemia and metabolic acidosis have been reported after administration of one teaspoon of clove oil to a seven-month-old infant (43457). A case of electrolyte imbalance following accidental ingestion by a seven-month-old has also been reported (6).
Hematologic ...A case of disseminated intravascular coagulation has been reported in a 2-year-old patient after consuming between 5-10 mL of clove oil. The patient was treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III. On the fifth day, the patient started to improve and made a full recovery (43652).
Hepatic ...There are three cases of hepatic failure occurring in children after ingestion of 5-10 mL of clove oil (43395,43419,43652). Liver injury also occurred in a 3-year-old male (96949). These patients were successfully treated with N-acetylcysteine. The course of liver injury seems to be milder and shorter with early N-acetylcysteine treatment (43395,43419,96949). Another patient, who also presented with disseminated intravascular coagulation, was successfully treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III (43652).
Immunologic ...Contact dermatitis and urticaria has been reported following topical exposure to clove oil or eugenol, a constituent of clove oil (12635,43339,43606,43346).
Neurologic/CNS ...CNS depression has been reported in a 7-month-old who was given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457). A case of confusion and inability to speak has been reported secondary to oral exposure to clove oil and alcohol. The patient required intubation and was successfully treated with thiamine and normal saline (43580). Seizure and coma have been reported in a two-year-old male after ingesting 5-10 mL of clove oil (43652).
Pulmonary/Respiratory
...Clove cigarettes have been associated with throat and chest tightness (43337), pulmonary edema (43618), and fatal aspiration pneumonitis (43599).
The causative factor may be clove alone or clove along with other substances found in cigarettes. Clove cigarettes contain significant amounts of nicotine, tar, and carbon monoxide and increase plasma levels of nicotine and exhaled carbon monoxide, which might cause long-term health effects similar to tobacco smoking (12892). According to the American Medical Association, inhaling clove cigarette smoke has been associated with severe lung injury in a few susceptible individuals with prodromal respiratory infection. Also, some individuals with normal respiratory tracts have apparently suffered aspiration pneumonitis as the result of a diminished gag reflex induced by a local anesthetic action of eugenol, which is volatilized into the smoke (43602).
Intravenous injection of clove oil in a 32-year-old female resulted in hypoxia, acute dyspnea, interstitial and alveolar infiltrates, and non-cardiogenic pulmonary edema. The patient was managed with supplemental oxygen and recovered over the next seven days (16384).
Occupational exposure to eugenol, a constituent of clove, has also been reported to cause asthma and rhinitis (43492).
Renal ...Proteinuria and other urinary abnormalities were observed in a seven-month-old infant given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457).
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General
...Orally, Devil's claw seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Allergic skin reactions, diarrhea, dyspepsia.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal bleeding.
Cardiovascular ...In one case report, a healthy patient with normal blood pressure presented with hypertension after taking devil's claw 250 mg twice daily for 2 weeks. It gradually resolved after discontinuation of devil's claw (92017). Some animal research shows that devil's claw might have negative chronotropic, as well as positive and negative inotropic, effects (8609). However, these effects have not been documented in humans.
Dermatologic ...Rarely, allergic skin reactions have been reported in patients taking devil's claw (8608,14418).
Endocrine ...In one case report, a 65-year-old female developed psychomotor agitation, nausea, and distress from euvolemic hyponatremia secondary to inappropriate secretion of antidiuretic hormone (SIADH) within 1 month of starting daily treatment with devil's claw. Within 5 days of discontinuing the product and receiving sodium replacement, the symptoms resolved. Two months later, the patient re-initiated devil's claw and again developed euvolemic hyponatremia (96747).
Gastrointestinal ...Gastrointestinal side effects, including mild gastrointestinal upset, diarrhea, anorexia, acid reflux, or loss of taste, have been reported in some individuals receiving devil's claw, especially at high doses (6472,8608,8613,14332,14418,47112,47116,47144,47169). Gastrointestinal complaints have been reported in 9% to 18% of patients taking a specific devil's claw extract (Doloteffin, Ardeypharm) (8608,47169), while diarrhea was reported in about 8% of patients taking devil's claw (Harpadol, Arkopharma) (6472). Several cases of gastrointestinal bleeding have been reported (104977).
Genitourinary ...Dysmenorrhea was reported in one patient taking a specific devil's claw extract (Doloteffin, Ardeypharm) for 8 weeks (8608).
Neurologic/CNS ...In a trial of devil's claw, one patient withdrew after 4 days of therapy due to a throbbing frontal headache, as well as tinnitus, anorexia, and loss of taste (8613). Rarely, dizziness, somnolence, and insomnia have been reported (47116,47169). It is unclear if these symptoms were caused by devil's claw.
Psychiatric ...Rarely, anxiety has been reported in patients taking devil's claw (8608).
General ...European barberry is generally well tolerated when consumed in amounts commonly found in food. A thorough evaluation of safety outcomes has not been conducted for the use of larger, medicinal amounts. Topically, European barberry seems to be well tolerated.
Hepatic ...Orally, a case of hepatitis-associated aplastic anemia is reported in an adult male after consuming European barberry 15 drops and nannari root 15 drops twice a day for 2 weeks. The patient presented with lethargy, loss of appetite, and jaundice that progressed to high-grade fevers, chills, rigors, severe pancytopenia, and abnormal liver function tests. Liver biopsy was suggestive of drug-induced liver injury. The patient was hospitalized for multiple infections and symptomatic thrombocytopenia. Despite receiving supportive care, blood transfusions, and corticosteroids, the patient died 7 weeks after diagnosis (110021). The exact reason for this adverse effect is not clear.
General
...Orally, flaxseed is usually well-tolerated.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, gastrointestinal complaints.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions such as and anaphylaxis.
Gastrointestinal
...Integrating flaxseed in the diet can cause digestive symptoms similar to other sources of dietary fiber including bloating, fullness, flatulence, abdominal pain, diarrhea, constipation, dyspepsia, and nausea (12910,16761,16765,21198,21200,22176,22179,65866,101943).
Higher doses are likely to cause more gastrointestinal side effects. Flaxseed can significantly increase the number of bowel movements and the risk for diarrhea (6803,8021,16765). Doses greater than 45 grams per day may not be tolerated for this reason (6802). Metallic aftertaste and bowel habit deterioration have also been reported in a clinical trial (21198).
There is some concern that taking large amounts of flaxseed could result in bowel obstruction due to the bulk forming laxative effects of flaxseed. Bowel obstruction occurred in one patient in a clinical trial (65866). However, this is not likely to occur if flaxseed is consumed with an adequate amount of fluids.
Immunologic ...Occasionally, allergic and anaphylactic reactions have been reported after ingestion of flaxseed (16761). Handling and processing flaxseed products might increase the risk of developing a positive antigen test to flaxseed and hypersensitivity (6809,12911,26471,26482).
Oncologic ...Flaxseed contains alpha-linolenic acid (ALA). High dietary intake of ALA has been associated with increased risk for prostate cancer (1337,2558,7823,7147,12978). However, ALA from plant sources, such as flaxseed, does not seem to increase this risk (12909).
Other ...Orally, partially defatted flaxseed, which is flaxseed with less alpha-linolenic acid, might increase triglyceride levels (6808). Raw or unripe flaxseed contains potentially toxic cyanogenic glycosides (linustatin, neolinustatin, and linamarin). These chemicals can increase blood levels and urinary excretion of thiocyanate in humans. However, these glycosides have not been detected after flaxseed is baked (5899).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, hops extract and oil are generally well tolerated when used in food amounts.
Hops extract also seems to be well tolerated when used in supplemental amounts.
Most Common Adverse Effects:
Orally: Drowsiness, sedation.
Dermatologic ...Topically, allergic reactions have been reported after contact with the fresh hops plant and plant dust. Contact dermatitis is attributed to the pollen (4,12,105930).
Genitourinary ...Orally, supplements containing hops and soy have been associated with 4 cases of postmenopausal bleeding (55404). It is unclear if this effect is due to hops, soy, or the combination. Also, menstrual disturbances have been reported in female workers harvesting hops (10684,55405).
Neurologic/CNS ...Orally, hops might cause drowsiness and sedation. Historically, hops are thought to have sedative effects, since workers harvesting hops were observed to tire easily after oral contact with hop resin. The European Medicines Agency states that hops may have sedative effects; however, there is a lack of clinical research confirming that hops extract causes drowsiness and sedation (105930).
Pulmonary/Respiratory ...Occupational exposure to dust from hops, usually in combination with dust from other products, is associated with chronic respiratory symptoms such as dry cough, dyspnea, chronic bronchitis, and other occupational respiratory diseases (55333,55414).
General
...Orally and intravaginally, Lactobacillus acidophilus is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Intravaginally: Vaginal discharge.
Serious Adverse Effects (Rare):
Orally: There is concern that L. acidophilus may cause infections in some people.
Dermatologic ...Orally, in one clinical trial, a combination of Lactobacillus acidophilus La-5, Lacticaseibacillus paracasei subsp. paracasei F19, and Bifidobacterium animalis subsp. lacltis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. acidophilus, other ingredients, the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Orally, taking Lactobacillus acidophilus in combination with other probiotics may cause gastrointestinal side effects including epigastric discomfort (90239), abdominal pain (90239,90291,111785), dyspepsia (90239), flatulence (107497,107520), bloating (107497,111785), diarrhea (111785), vomiting (107537), and burping (90239); however, these events are uncommon.
Genitourinary ...Intravaginally, cream containing Lactobacillus acidophilus has been shown to cause increased vaginal discharge in about 5% of patients, compared to about 1% of patients receiving placebo cream (90237). Vaginal burning was reported by one person using intravaginal L. acidophilus and Limosilactobacillus fermentum in a clinical trial (111781).
Immunologic ...Since Lactobacillus acidophilus preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. L. acidophilus has been isolated in some cases of bacteremia, sepsis, splenic abscess, liver abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract (107543,111782,111792). L. acidophilus endophthalmitis has been reported rarely (111787,111795). In one case, it was related to intravitreal injections for age-related macular degeneration in a 90-year-old female with an intraocular lens (111787). In another, it occurred following cataract surgery (111795).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General
...Orally, marjoram and its essential oil are well tolerated in amounts commonly found in foods (4912).
Marjoram leaf and marjoram oil seem to be well tolerated when used appropriately for medicinal purposes (2,11,12,18). However, marjoram flower, leaf, and oil should not be used long-term due to the arbutin content (2,76395,95524).
Topically, there are rare reports of allergic skin reactions with marjoram use (33865,58049).
Immunologic ...Possible allergic contact dermatitis in children with pre-existing childhood atopic eczema was observed in a randomized clinical trial employing extended use of essential oils, including sweet marjoram essential oil (58049). A case report describes a 38-year old woman who had an exacerbation of perioral dermatitis after eating food seasoned with marjoram. The dermatitis resolved within 3 weeks on a marjoram-free diet, but reappeared when she was rechallenged with marjoram (33865).
General
...Orally, milk thistle is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, diarrhea, dyspepsia, flatulence, and nausea. However, these adverse effects do not typically occur at a greater frequency than with placebo.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Dermatologic ...Orally, milk thistle may cause allergic reactions including urticaria, eczema, skin rash, and anaphylaxis in some people (6879,7355,8956,63210,63212,63238,63251,63315,63325,95029). Allergic reactions may be more likely to occur in patients sensitive to the Asteraceae/Compositae family (6879,8956). A case report describes a 49-year-old female who developed clinical, serologic, and immunopathologic features of bullous pemphigoid after taking milk thistle orally for 6 weeks. Symptoms resolved after treatment with prednisone and methotrexate (107376). Topically, milk thistle can cause erythema (110489).
Gastrointestinal ...Mild gastrointestinal symptoms have been reported, including nausea, vomiting, bloating, diarrhea, epigastric pain, abdominal colic or discomfort, dyspepsia, dysgeusia, flatulence, constipation, and loss of appetite (2616,6879,8956,13170,63140,63146,63160,63210,63218,63219)(63221,63244,63247,63250,63251,63320,63321,63323,63324,63325)(63327,63328,95024,95029,107374,114914). There is one report of a 57-year-old female with sweating, nausea, colicky abdominal pain, diarrhea, vomiting, weakness, and collapse after ingesting milk thistle; symptoms subsided after 24-48 hours without medical treatment and recurred with re-challenge (63329).
Musculoskeletal ...In one clinical study three patients taking milk thistle 200 mg orally three times daily experienced tremor; the incidence of this adverse effect was similar for patients treated with fluoxetine 10 mg three times daily (63219).
Neurologic/CNS ...With oral milk thistle use, CNS symptoms have been reported, including headache, dizziness, and sleep disturbances (114913,114914).
General
...Orally, myrrh seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Kidney impairment and heart rate changes at high doses.
Cardiovascular ...Orally, myrrh taken at doses of 2-4 grams may cause heart rate changes in some patients (12,19).
Dermatologic ...Topically, myrrh has been reported to cause dermatitis (6).
Gastrointestinal ...Orally, myrrh may cause diarrhea in some patients when taken at doses of 2-4 grams (12,19).
Genitourinary ...Severe lower abdominal pain has been reported in a pregnant woman drinking myrrh resin dissolved in 500 mL of water twice daily as prescribed by a traditional practitioner. This adverse effect resolved one day after discontinuing myrrh. The investigators suggest that this acute abdominal pain was related to myrrh's activity as a uterine stimulant (93645).
Immunologic ...Orally, myrrh has been reported to cause severe allergic skin reactions, with redness, swelling, and itching, in two case reports of individuals using oral traditional Chinese medicines containing myrrh (101114).
Renal ...Orally, myrrh may cause kidney impairment in some patients when taken at doses of 2-4 grams (12,19).
General
...Orally, oats are well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, bloating, flatulence, and unpleasant taste.
Topically: Burning, contact dermatitis, itching, and redness.
Dermatologic ...Topically, oat-containing preparations can cause contact dermatitis (12515). Redness, burning, and itchiness have also been reported (103340).
Gastrointestinal
...When consumed orally, oats provide fiber.
Increasing fiber in the diet can cause flatulence, bloating, abdominal distention, and unpleasant taste. To minimize side effects, doses should be slowly titrated to the desired level. These adverse effects usually subside with continued use (12514).
In patients who have difficulty chewing food, or those with conditions that decrease small bowel motility, oat bran may cause bezoars (concretions) and intestinal obstruction. Oats and oat bran are unlikely to cause obstruction without other causative factors (4979,4985).
Immunologic ...In a case report, a 45-year-old male developed acute generalized urticaria, facial angioedema, and dyspnea immediately after consuming oat flour. The reaction resolved after emergency care for anaphylaxis. Further investigation revealed an IgE-mediated hypersensitivity reaction to oat proteins (113490).
General ...Orally, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted. Topically, Oregon grape seems to be well tolerated.
Dermatologic ...Topically, Oregon grape may cause itching, burning, and skin irritation in some patients (854,14000).
Immunologic ...Topically, Oregon grape may cause allergic skin reactions in some patients (854,14000).
General
...Orally, red raspberry fruit is well tolerated.
There is currently a limited amount of information on the adverse effects of red raspberry leaf.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, and epigastric pain. However, these adverse effects do not commonly occur with typical doses.
Dermatologic ...A liquid containing red raspberry leaf cell culture extract 0. 0005%, vitamin C 20%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to red raspberry leaf, the other ingredients, or the combination.
Gastrointestinal ...Orally, red raspberry may cause gastrointestinal upset, diarrhea, and epigastric pain (112127).
Pulmonary/Respiratory ...A case of occupational asthma due to the inhalation of red raspberry powder has been reported for a 35-year-old female. Symptoms included wheezing and shortness of breath (70370).
General
...Orally, rhubarb root and stalk are well tolerated when used in food amounts and seem to be well tolerated when used in medicinal amounts.
Rhubarb leaf contains oxalic acid and can be toxic. Topically, rhubarb seems to be well tolerated.
Most Common Adverse Effects:
Orally: Cramps, diarrhea, gastrointestinal discomfort, nausea, vomiting.
Topically: Rash.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Cardiovascular ...Orally, chronic use or abuse of rhubarb can cause arrhythmias (12).
Dermatologic ...Orally, rhubarb taken alone or in combination with other ingredients has been reported to cause rash (71315,71342). Topically, short term application of a specific product (Pyralvex) containing rhubarb, salicylic acid, and ethanol to the gums has been reported to cause slight burning and dark discoloration of the gums in approximately 1% of patients (71369). It is unclear if this effect is due to rhubarb, other ingredients, or the combination.
Endocrine ...Orally, chronic use or abuse of rhubarb can cause electrolyte loss (especially potassium), hyperaldosteronism, albuminuria, and edema (12).
Gastrointestinal
...Orally, rhubarb can cause cramp-like or spasmodic gastrointestinal discomfort, watery diarrhea, and uterine contractions (18).
Rhubarb, alone or in combination with other ingredients, has also been reported to cause bloating, nausea, diarrhea, vomiting, and stomach upset or pain in clinical studies. Diarrhea is more common with a starting dose of at least 3 grams of extract (71315,71329,71339,71340,71341,71342,71373,92300). Chronic use or abuse of rhubarb can cause inhibition of gastric motility and pseudomelanosis coli (pigment spots in the intestinal mucosa) (12,6138).
Although some research suggests that rhubarb and other anthranoid laxatives might increase the risk of colorectal cancer due to pseudomelanosis coli (30743), more recent research suggests that this condition is harmless, typically reversed with rhubarb discontinuation, and not associated with an increased risk for colorectal adenoma or carcinoma (6138).
Hematologic ...Orally, chronic use or abuse of rhubarb can cause hematuria (12).
Hepatic ...Orally, chronic use of anthraquinone-containing products, such as rhubarb, has been associated with hepatotoxicity (15257). Use of rhubarb specifically has been linked to at least 24 reports of liver injury, although details on the dose of rhubarb and duration of use in these cases are not clear (100963). In one clinical study, rhubarb, taken in combination with other ingredients, has been reported to cause mild to moderate elevations of serum alanine aminotransferase (71315).
Immunologic ...Orally, rhubarb has rarely been reported to cause anaphylaxis (18).
Musculoskeletal ...Orally, chronic use or abuse of rhubarb can cause accelerated bone deterioration and muscular weakness (12).
Renal ...Orally, chronic use or abuse of rhubarb can cause electrolyte loss (especially potassium), albuminuria, hematuria, dehydration, and nephropathies (12). There is one case report of renal failure in a patient who took a product containing rhubarb for six weeks. The patient presented with renal failure two days after starting diclofenac, which is known to have nephrotoxic effects. It is hypothesized that the combination of diclofenac with the anthraquinone constituents of rhubarb precipitated renal dysfunction (15257).
General ...Orally, slippery elm seems to be well tolerated. A thorough evaluation of safety outcomes with topical use of slippery elm has not been conducted.
Dermatologic ...Topically, slippery elm extracts can cause contact dermatitis. The pollen is an allergen (6). Contact dermatitis and urticaria have been reported after exposure to slippery elm or an oleoresin contained in the slippery elm bark (75131).
General
...Orally, verbena is well tolerated when used orally in amounts commonly found in foods (4912).
When used in medicinal amounts and in combination with other herbs, adverse effects have included gastrointestinal adverse effects and allergic skin reactions (374,379).
Topically, verbena can cause contact dermatitis (13431).
Gastrointestinal ...Orally, verbena in combination with other herbs can cause gastrointestinal adverse effects (374,379).
Immunologic ...Orally, verbena in combination with other herbs can cause allergic skin reactions (374,379). Topically, verbena can cause contact dermatitis (13431).